3 resultados para Alburni Massif Hydrogeology Caves

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alburni Massif is the most important karstic area in southern Italy and It contains about 250 caves. Most of these caves are located on the plateau, between 1500 m a.s.l. and 700 m a.s.l., and only a few reach the underground streams that feed the springs and the deep aquifer. The main springs are Grotta di Pertosa-Auletta (CP1) and Auso spring (CP31), both located at 280 m a.s.l., the first on the south-eastern margin whereas the second on south-west margin, and the springs present in Castelcivita area, the Castelcivita-Ausino system (CP2) and Mulino di Castelcivita spring (CP865), located at 60 m a.s.l.. Some other secondary springs are present too. We have monitored Pertosa-Auletta’s spring with a multiparameter logger. This logger has registered data from November 2014 to December 2015 regarding water level, electric conductivity and temperature. The hydrodynamic monitoring has been supported by a sampling campaign in order to obtain chemical water analyses. The work was done from August 2014 to December 2015, not only at Pertosa but also at all the other main springs, and in some caves. It was possible to clarify the behavior of Pertosa-Auletta’s spring, almost exclusively fed by full charge conduits, only marginally affected by seasonal rains. Pertosa-Auletta showed a characteristic Mg/Ca ratio and Mg2+ enrichment, as demonstrated by its saturation index that always showed a dolomite saturation. All other spring have characteristic waters from a chemical point of view. In particular, it highlights the great balance between the components dissolved in the waters of Mulino’ spring opposed to the variability of the nearby Castelcivita-Ausino spring. Regarding the Auso spring the variable behavior in terms of discharge and chemistry is confirmed, greatly influenced by rainfall and, during drought periods, by full charge conduits. Rare element concentrations were also analyzed and allowed to characterize further the different waters. Based on all these data an updated hydrogeological map of the Alburni massif has been drawn, that defines in greater detail the hydrogeological complexes on the basis of lithologies, and therefore of their chemical characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to provide a geochemical characterization of the Seehausen territory (a neighborhood) of Bremen, Germany. In this territory it is hosted a landfill of dredged sediments coming both from Bremerhaven (North See) and Bremen harbor (directly on the river Weser). For this reason this work has been focused also on possible impacts of the landfill on the groundwaters (shallow and deep aquifer). The Seehausen landfill uses the dewatering technique to manage the dredged sediments: incoming sediments are put into dewatering fields until they are completely dried (it takes almost a year). Then they are randomly sampled and analyzed: if the pollutants content is acceptable, sediments are treated with other materials and used instead of raw material for embankment, bricks, etc., otherwise they are disposed in the landfill. During this work it has been made a study of the natural geology and hydrogeology of the whole area of interest, especially because it is characterized by ancient natural salt deposits. Then, together with the Geological Survey of Bremen and the Harbor Authority of Bremen there have been identified all useful piezometers for a monitoring net around the landfill. During the sampling campaign there have been collected data of the principal anions and cations, physical parameters and stable water isotopes. Data analysis has been focused particularly on Cl, Na, SO4 and EC because these parameters might be helpful to attribute geochemical trends to the landfill or to a natural background. Furthermore dataloggers have been installed for a month in some piezometers and EC, pressure, dissolved oxygen and temperature data have been collected. Finally there has been made a deep comparison between current and historical data (1996 – 2011) and between old interpolation maps and current ones in order to see time trends of the aquifer geochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2011 the GSB/USB caving group of Bologna has discovered, in the southern fossil branches of Govjestica cave (Valle di Praça, Bosnia) a fossil deposit of vertebrates containing bones of Ursus spelaeus, Capra ibex, Cricetulus migratorius and Microtus. On the basis of the U/Th ages of the bones, teeth and carbonate flowstone covering the fossils (60 ka), datings carried out in the laboratories of U-Series at Bologna, and on the disposition of the bones, a past connection between Govjestica and the nearby Banja Stjena cave is hypothesised. The closure of this passage has occurred suddenly through a collapse that has forced the last cave bears awakened from their winter sleep to stay blocked in Govjestica, and die. The connecting passage has later been covered with calcite flowstones and is no longer visible. This hypothesis is sustained by the rather scarce number of skeletons of cave bears found in Govjestica (a dozen of skulls against the often large amounts of cave bears found in similar caves): Govjestica cave, and especially the Room of the Bones in its southern part, has been used by cave bears only for a couple of centuries before these parts became inaccessible. Furthermore, the entrance of Banja Stjena cave was probably located close to or at the level of the Praça river, that has excavated its thalweg for around 20 metres in the last 60 ka.