6 resultados para Aerodynamics, Supersonic.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il presente lavoro tratta lo studio dei fenomeni aeroelastici di interazione fra fluido e struttura, con il fine di provare a simularli mediante l’ausilio di un codice agli elementi finiti. Nel primo capitolo sono fornite alcune nozioni di fluidodinamica, in modo da rendere chiari i passaggi teorici fondamentali che portano alle equazioni di Navier-Stokes governanti il moto dei fluidi viscosi. Inoltre è illustrato il fenomeno della formazione di vortici a valle dei corpi tozzi dovuto alla separazione dello strato limite laminare, con descrizione anche di alcuni risultati ottenuti dalle simulazioni numeriche. Nel secondo capitolo vengono presi in rassegna i principali fenomeni di interazione fra fluido e struttura, cercando di metterne in luce le fondamenta della trattazione analitica e le ipotesi sotto le quali tale trattazione è valida. Chiaramente si tratta solo di una panoramica che non entra in merito degli sviluppi della ricerca più recente ma fornisce le basi per affrontare i vari problemi di instabilità strutturale dovuti a un particolare fenomeno di interazione con il vento. Il terzo capitolo contiene una trattazione più approfondita del fenomeno di instabilità per flutter. Tra tutti i fenomeni di instabilità aeroelastica delle strutture il flutter risulta il più temibile, soprattutto per i ponti di grande luce. Per questo si è ritenuto opportuno dedicargli un capitolo, in modo da illustrare i vari procedimenti con cui si riesce a determinare analiticamente la velocità critica di flutter di un impalcato da ponte, a partire dalle funzioni sperimentali denominate derivate di flutter. Al termine del capitolo è illustrato il procedimento con cui si ricavano sperimentalmente le derivate di flutter di un impalcato da ponte. Nel quarto capitolo è presentato l’esempio di studio dell’impalcato del ponte Tsing Ma ad Hong Kong. Sono riportati i risultati analitici dei calcoli della velocità di flutter e di divergenza torsionale dell’impalcato e i risultati delle simulazioni numeriche effettuate per stimare i coefficienti aerodinamici statici e il comportamento dinamico della struttura soggetta all’azione del vento. Considerazioni e commenti sui risultati ottenuti e sui metodi di modellazione numerica adottati completano l’elaborato.
Resumo:
A numerical study using Large Eddy Simulation Coherent Structure Model (LES-CSM), of the flow around a simplified Ahmed body, has been done in this work of thesis. The models used are two salient geometries from the experimental investigation performed in [1], and consist, in particular, in two notch-back body geometries. Six simulation are carried out in total, changing Reynolds number and back-light angle of the model’s rear part. The Reynolds numbers used, based on the height of the models and the free stream velocity, are Re = 10000, Re = 30000 and Re = 50000. The back-light angles of the slanted surface with respect to the horizontal roof surface, that characterizes the vehicle, are taken as B = 31.8◦ and B = 42◦ respectively. The experimental results in [1] have shown that, depending on the parameter B, asymmetric and symmetric averaged flow over the back-light and in the wake for a symmetric geometry can be observed. The aims of the present work of master thesis are principally two. The first aim is to investigate and confirm the influence of the parameter B on the presence of the asymmetry of the averaged flow, and confirm the features described in the experimental results. The second important aspect is to investigate and observe the influence of the second variable, the Reynolds number, in the developing of the asymmetric flow itself. The results have shown the presence of the mentioned asymmetry as well as an influence of the Reynolds number on it.
Resumo:
This thesis provides an experimental analysis of the effectiveness of oriented DBD plasma actuators over a NACA 0015 airfoil at low Reynolds numbers. Tests were performed in partnership with the Department of Electrical Engineering of Bologna University, in the wind tunnel of the Applied Aerodynamics Laboratory of Aerospace Engineering faculty. Lift coefficient measurements were carried out in order to verify how an oriented plasma jet succeeds in prevent boundary layer separation. Both actuators’ chord wise position and plasma jet orientation angle have been investigated to examine which configurations lead to the best results. A particular attention has been paid also to the analysis of results in steady and unsteady plasma actuation. Questa tesi offre un’analisi sperimentale sull’efficacia di attuatori al plasma orientabili, basati su una tecnologia DBD, installati su un profilo alare NACA 0015, a bassi numeri di Reynolds. Le prove sono state condotte in collaborazione con il Dipartimento di Ingegneria Elettrica dell’Università di Bologna, nella galleria del vento del Laboratorio di Aerodinamica Applicata della Facoltà di Ingegneria Aerospaziale di Forlì. Per verificare come un getto orientabile di plasma riesca a prevenire la separazione dello strato limite, sono state eseguite misure sul coefficiente di portanza. Sono state indagate sia la posizione degli attuatori lungo la corda che l’angolo con cui è orientato il getto di plasma, per vedere quali configurazioni conducono ai migliori risultati. Una particolare attenzione è stata riservata all’analisi dei risultati ottenuti con plasma continuo e pulsato.
Resumo:
General Relativity is one of the greatest scientific achievementes of the 20th century along with quantum theory. These two theories are extremely beautiful and they are well verified by experiments, but they are apparently incompatible. Hints towards understanding these problems can be derived studying Black Holes, some the most puzzling solutions of General Relativity. The main topic of this Master Thesis is the study of Black Holes, in particular the Physics of Hawking Radiation. After a short review of General Relativity, I study in detail the Schwarzschild solution with particular emphasis on the coordinates systems used and the mathematical proof of the classical laws of Black Hole "Thermodynamics". Then I introduce the theory of Quantum Fields in Curved Spacetime, from Bogolubov transformations to the Schwinger-De Witt expansion, useful for the renormalization of the stress energy tensor. After that I introduce a 2D model of gravitational collapse to study the Hawking radiation phenomenon. Particular emphasis is given to the analysis of the quantum states, from correlations to the physical implication of this quantum effect (e.g. Information Paradox, Black Hole Thermodynamics). Then I introduce the renormalized stress energy tensor. Using the Schwinger-De Witt expansion I renormalize this object and I compute it analytically in the various quantum states of interest. Moreover, I study the correlations between these objects. They are interesting because they are linked to the Hawking radiation experimental search in acoustic Black Hole models. In particular I find that there is a characteristic peak in correlations between points inside and outside the Black Hole region, which correpsonds to entangled excitations inside and outside the Black Hole. These peaks hopefully will be measurable soon in supersonic BEC.
Resumo:
Joseph Nicolas Cugnot built the first primitive car in 1769 and approximately one hundred year later the first automotive race took place. Thanks to this, for the first time the aerodynamics principles began to be applied to cars. The aerodynamic study of a car is important to improve the performance on the road, or on the track. It purposely enhances the stability in the turns and increases the maximum velocity. However, it is also useful, decrease the fuel consumption, in order to reduce the pollution. Given that cars are a very complex body, the aerodynamic study cannot be conducted following an analytical method, but it is possible, in general, to choose between two different approaches: the numerical or the experimental one. The results of numerical studies depend on the computers’ potential and on the method use to implement the mathematical model. Today, the best way to perform an aerodynamic study is still experimental, which means that in the first phase of the design process the study is performed in a wind tunnel and in later phases directly on track. The automotive wind tunnels are singular mainly due to the test chamber, which typically contains a ground simulation system. The test chamber can have different types of walls: open walls, closed walls, adaptive walls or slotted walls. The best solution is to use the slotted walls because they minimize the interference between the walls and the streamlines, the interaction between the flow and the environment, and also to contain the overall costs. Furthermore, is necessary minimize the boundary layer at the walls, without accelerating the flow, in order to provide the maximum section of homogeneous flow. This thesis aims at redefining the divergent angle of the Dallara Automobili S.P.A. wind tunnel’s walls, in order to improve the overall homogeneity. To perform this study it was necessary to acquire the pressure data of the boundary layer, than it was created the profile of the boundary layer velocity and, to minimize the experimental errors, it was calculated the displacement thickness. The results obtained shows, even if the instrument used to the experiment was not the best one, that the boundary layer thickness could be minor in case of a low diffusion angle. So it is convenient to perform another experiment with a most sensitive instrument to verified what is the better wall configuration.
Resumo:
Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.