2 resultados para Adaptive Quality Service
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Resource management is of paramount importance in network scenarios and it is a long-standing and still open issue. Unfortunately, while technology and innovation continue to evolve, our network infrastructure system has been maintained almost in the same shape for decades and this phenomenon is known as “Internet ossification”. Software-Defined Networking (SDN) is an emerging paradigm in computer networking that allows a logically centralized software program to control the behavior of an entire network. This is done by decoupling the network control logic from the underlying physical routers and switches that forward traffic to the selected destination. One mechanism that allows the control plane to communicate with the data plane is OpenFlow. The network operators could write high-level control programs that specify the behavior of an entire network. Moreover, the centralized control makes it possible to define more specific and complex tasks that could involve many network functionalities, e.g., security, resource management and control, into a single framework. Nowadays, the explosive growth of real time applications that require stringent Quality of Service (QoS) guarantees, brings the network programmers to design network protocols that deliver certain performance guarantees. This thesis exploits the use of SDN in conjunction with OpenFlow to manage differentiating network services with an high QoS. Initially, we define a QoS Management and Orchestration architecture that allows us to manage the network in a modular way. Then, we provide a seamless integration between the architecture and the standard SDN paradigm following the separation between the control and data planes. This work is a first step towards the deployment of our proposal in the University of California, Los Angeles (UCLA) campus network with differentiating services and stringent QoS requirements. We also plan to exploit our solution to manage the handoff between different network technologies, e.g., Wi-Fi and WiMAX. Indeed, the model can be run with different parameters, depending on the communication protocol and can provide optimal results to be implemented on the campus network.
Resumo:
Ogni giorno vengono generati grandi moli di dati attraverso sorgenti diverse. Questi dati, chiamati Big Data, sono attualmente oggetto di forte interesse nel settore IT (Information Technology). I processi digitalizzati, le interazioni sui social media, i sensori ed i sistemi mobili, che utilizziamo quotidianamente, sono solo un piccolo sottoinsieme di tutte le fonti che contribuiscono alla produzione di questi dati. Per poter analizzare ed estrarre informazioni da questi grandi volumi di dati, tante sono le tecnologie che sono state sviluppate. Molte di queste sfruttano approcci distribuiti e paralleli. Una delle tecnologie che ha avuto maggior successo nel processamento dei Big Data, e Apache Hadoop. Il Cloud Computing, in particolare le soluzioni che seguono il modello IaaS (Infrastructure as a Service), forniscono un valido strumento all'approvvigionamento di risorse in maniera semplice e veloce. Per questo motivo, in questa proposta, viene utilizzato OpenStack come piattaforma IaaS. Grazie all'integrazione delle tecnologie OpenStack e Hadoop, attraverso Sahara, si riesce a sfruttare le potenzialita offerte da un ambiente cloud per migliorare le prestazioni dell'elaborazione distribuita e parallela. Lo scopo di questo lavoro e ottenere una miglior distribuzione delle risorse utilizzate nel sistema cloud con obiettivi di load balancing. Per raggiungere questi obiettivi, si sono rese necessarie modifiche sia al framework Hadoop che al progetto Sahara.