5 resultados para Adaptative Edge Detection
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Keying e composizione sono da sempre tecniche ampiamente utilizzate in contesti multimediali, quali produzione cinematografica e televisiva; il chroma keying è in particolare la tecnica più popolare, ma presenta una serie di limiti e problematiche. In questo elaborato viene proposta una tecnica alternativa di estrazione, basata sull'uso della profondità, operante in tempo reale e che sfrutta il device Kinect di Microsoft. Sono proposti una serie di algoritmi, basati su tecniche di edge detection, utilizzati per il miglioramento della depth map lungo i bordi di estrazione; viene infine testato il risultato ottenuto dall'implementazione del sistema e proposta una possibile applicazione nell'ambito del teatro multimediale.
Resumo:
Nell'ambito dell'elaborazione delle immagini, si definisce segmentazione il processo atto a scomporre un'immagine nelle sue regioni costituenti o negli oggetti che la compongono. Ciò avviene sulla base di determinati criteri di appartenenza dei pixel ad una regione. Si tratta di uno degli obiettivi più difficili da perseguire, anche perché l'accuratezza del risultato dipende dal tipo di informazione che si vuole ricavare dall'immagine. Questa tesi analizza, sperimenta e raffronta alcune tecniche di elaborazione e segmentazione applicate ad immagini digitali di tipo medico. In particolare l'obiettivo di questo studio è stato quello di proporre dei possibili miglioramenti alle tecniche di segmentazione comunemente utilizzate in questo ambito, all'interno di uno specifico set di immagini: tomografie assiali computerizzate (TAC) frontali e laterali aventi per soggetto ginocchia, con ivi impiantate protesi superiore e inferiore. L’analisi sperimentale ha portato allo sviluppo di due algoritmi in grado di estrarre correttamente i contorni delle sole protesi senza rilevare falsi punti di edge, chiudere eventuali gap, il tutto a un basso costo computazionale.
Resumo:
In this thesis, we aim to discuss a simple mathematical model for the edge detection mechanism and the boundary completion problem in the human brain in a differential geometry framework. We describe the columnar structure of the primary visual cortex as the fiber bundle R2 × S1, the orientation bundle, and by introducing a first vector field on it, explain the edge detection process. Edges are detected through a lift from the domain in R2 into the manifold R2 × S1 and are horizontal to a completely non-integrable distribution. Therefore, we can construct a subriemannian structure on the manifold R2 × S1, through which we retrieve perceived smooth contours as subriemannian geodesics, solutions to Hamilton’s equations. To do so, in the first chapter, we illustrate the functioning of the most fundamental structures of the early visual system in the brain, from the retina to the primary visual cortex. We proceed with introducing the necessary concepts of differential and subriemannian geometry in chapters two and three. We finally implement our model in chapter four, where we conclude, comparing our results with the experimental findings of Heyes, Fields, and Hess on the existence of an association field.
Resumo:
In questa tesi abbiamo analizzato diverse tecniche di estrazione dei bordi, al fine di separare l'oggetto dallo sfondo o dagli altri oggetti di un'immagine digitale. I vari metodi sono stati confrontati su alcune immagini di test per meglio comprenderne pregi e difetti.
Resumo:
Diffusion on networks is a convenient framework to describe transport systems of different nature (from biological transport systems to urban mobility). The mathematical models are based on master equations that describe the diffusion processes by means of the weighted Laplacian matrix that connects the nodes. The link weight represent the coupling strength between the nodes. In this thesis we cope with the problem of localizing a single-edge failure that occurs in the network. An edge failure is meant to be as a sudden decrease of its transport capacities. An incomplete observation of the dynamical state of the network is available. An optimal clustering procedure based on the correlation properties among the node states is proposed. The network dimensionality is then reduced introducing representative nodes for each cluster, whose dynamical state is observed. We check the efficiency of the failure localization for our clustering method in comparison with more traditional techniques, using different graph configurations.