2 resultados para Acute phase response
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The hypothalamus-pituitary-interrenal axis is involved in stress response regulation. In addition, arginine vasotocin (AVT) and isotocin (IT) are also considered as important players in this stress regulation. The present study assessed, using the teleost gilthead sea bream (Sparus aurata) as a biological model, hypothalamic mRNA expression changes of AVT and IT and their receptors at hepatic level after an acute stress situation. Specimens were submitted to air for 3 min and place back in their respective tanks after that, being sampled at different times (15 min, 30 min, 1, 2, 4 and 8 hours post-stress) in order to study the time course response. Plasma cortisol values increased after few minutes post-exposure, decreasing during the experimental time while a metabolic reorganization occurred in both plasmatic and hepatic levels. At hypothalamic level, acute stress affects mRNA expression of AVT and IT precursors, as well as hepatic expression of their receptors, suggesting the involvement of both vasotocinergic and isotocinergic systems in the acute stress response. Our results demonstrate the activation and involvement of both endocrine pathways in the regulation of metabolic and stress systems of Sparus aurata, which is stated, at least, through changes in mRNA expression levels of these genes analysed.
Resumo:
Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.