4 resultados para Ab Initio Density Functional Calculations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Questa tesi intende approfondire da un punto di vista, sia teorico sia computazionale, le proprietà fondamentali dei fononi. A tal fine, sono presentati i modelli quantistici di Einstein e di Debye che permettono la derivazione analitica degli osservabili macroscopici principali di un solido, come l’energia media e la capacità termica. Ciò è possibile tramite una trattazione meccano-statistica basata sull’approssimazione armonica dei modi normali di vibrazione degli ioni reticolari. Quindi, all’inizio si mostrano brevemente i risultati principali riguardanti l’oscillatore armonico quantistico. Successivamente, si approfondiscono i temi della dispersione fononica e della densità degli stati vibrazionali per reticoli cristallini 1D e 3D. Si ottiene che la prima non può essere considerata lineare se non nel limite di alte lunghezze d’onda, e che la seconda può presentare punti di singolarità correlati alla forma della relazione di dispersione. Infine, sono state svolte alcune analisi computazionali ab initio relative alla dispersione fononica, la densità degli stati vibrazionali e la frequenza di Debye del Carbonio (diamante) tramite i programmi VASP e Phonopy, confrontando i risultati con dati sperimentali presenti in letteratura.
Resumo:
X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.
Resumo:
In questa tesi è stato svolto il calcolo di alcune proprietà dei materiali usando un approccio ab initio, in particolare i gap energetici e le DOS (densità di stati) di silicio e ossido di nichel. Per fare ciò, sono state usate tre diverse teorie: DFT (Density Functional Theory), DFT+U e GW. Nei primi tre capitoli sono state spiegate le tre approssimazioni fatte e le basi teoriche. Nel quarto capitolo si presentano i risultati. In particolare il gap del silicio usando la DFT è di 0.6617 eV che risulta più basso di quello sperimentale di 1.12 eV a causa dei limiti della DFT. Per la DFT+U è stato svolto il calcolo sull’ossido di nichel perché presenta orbitali d, interessati maggiormente nella correzione apportata. L’energia di gap calcolata è di 3.3986 eV . Per quel che riguarda l’approssimazione GW, è stata svolta anch’essa sul silicio e restituisce un gap di 1.301 eV , che risulta più vicino alla misura sperimentale rispetto alla DFT.
Resumo:
The aim of this thesis is to introduce the polaron concept and to perform a DFT numerical calculation of a small polaron in the rutile phase of TiO2. In the first chapters, we present an analytical study of small and large polarons, based on the Holstein and Fröhlich Hamiltonians. The necessary mathematical formalism and physics fundamentals are briefly reviewed in the first chapter. In the second part of the thesis, Density Functional Theory (DFT) is introduced together with the DFT+U correction and its implementation in the Vienna Ab-Initio Simulation Package (VASP). The calculation of a small polaron in rutile is then described and discussed at a qualitative level. The polaronic solution is compared with the one of a delocalized electron. The calculation showed how the polaron creates a new energy level 0.70 eV below the conduction band. The energy level is visible both in the band structure diagram and in the density of states diagram. The electron is localized on a titanium atom, distorting the surrounding lattice. In particular, the four oxygen atoms closer to the titanium atom are displaced by 0.085 Å outwards, whereas the two further oxygen atoms by 0.023 Å. The results are compatible, at a qualitative level, with the literature. Further developments of this work may try to improve the precision of the results and to quantitatively compare them with the literature.