12 resultados para ALIPHATIC-ALDEHYDES
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The oxidation of alcohols and olefins is a pivotal reaction in organic synthesis. However, traditional oxidants are toxic and they often release a considerable amounts of by-products. Here, two IronIII-based systems are shown as oxidative catalyst, working in mild conditions with hydrogen peroxide as primary oxidant. An efficient catalytic system for the selective oxidation of several alcohols to their corresponding aldehydes and ketones was developed and characterized, [Fe(phen)2Cl2]NO3 (phen=1,10-Phenantroline). It was demonstrated that the adoption of a buffered aqueous solution is of crucial importance to ensure both considerable activity and selectivity.The Iron - Thymine-1-acetic acid in-situ complex was studied as catalyst in alcohol oxidations and C-H oxidative functionalization, involving hydrogen peroxide as primary oxidant in mild reaction conditions. The catalytic ability in alcohol oxidations was investigated by Density Functional Theory calculations, however the catalyst still has uncertain structure. The system shows satisfactory activity in alcohol oxidation and aliphatic rings functionalization. The Fe-THA system was studied in cyclohexene oxidation and oxidative halogenations. Halide salts such as NBu4X and NH4X were introduced in the catalytic system as halogens source to obtain cyclohexene derivatives such as halohydrins, important synthetic intermediates.The purpose of this dissertation is to contribute in testing new catalytic systems for alcohol oxidations and C-H functionalization. In particular, most of the efforts in this work focus on studying the Iron - Thymine-1-acetic acid (THA) systems as non-heme oxidative model, which present: •an iron metal centre(s) as a coordinative active site, •hydrogen peroxide as a primary oxidant, •THA as an eco-friendly, biocompatible, low cost coordinating ligand.
Resumo:
Crystallization-induced diastereoisomer transformation (CIDT) was successfully employed in the enantioselective synthesis of 2-alkyl-3-aryl-propan-1-amines. These products are seen as potentially useful building blocks in the field of asymmetric organic chemistry, notably for pharmaceutically relevant compounds. The procedure was based on a recently reported protocol for deracemization of dihydrocinnamic aldehydes in which enantiomerically enriched 1-(amino(phenyl)methyl)naphthalen-2-ol (Betti base) is employed as a resolving agent. Additionally, fenpropimorph, a biologically active substance which contains the 2-alkyl-3-aryl-propan-1-amine moiety was synthetized, as an attempt to assess the usefulness of the enantiomerically enriched amines.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
In this thesis, the development of an enantioselective oxidation of α-branched aldehydes using covalent organocatalysis is described. At state of the art, the asymmetric organocatalysis approach, gave often serous difficulties for these kind of substrate respect “classic” aldehydes. We have used a primary cinchona alkaloid derived amine (specially the 9-epi-NH2-CDA) to develop the reaction in combinations with additives. With benzoyl peroxide as oxidant and 2-phenylpropionaldehyde as reference substrate, we have tried to optimize this system but we not found great results about enantiomeric excess.
Resumo:
In the last few years organic chemistry has focused attention on enantiomeric resolution. Among the several techiniques, crystallization-induced diastereoisomeric transformation (CIDT) aroused the interest because of high yields, as well as to meet the criteria of green chemistry. The process is applied in the specific way for a racemic mixtures of α- epimerizable aldehydes, in order to obtain enatiomerically enrichment mixtures. This technique involves the transformation of a racemic mixture of enantiomers into a diasteroisomeric one by a reaction with a enantiopure auxiliary (Betti’s base). Then, to mixture of diastereoisomers is applied the acid-catalyzed enrichment process: in solution, the epimerization of more soluble diastereoisomer occurs, accompanied by precipitation and hence the removal of the less soluble one from the equilibrium. Finally, through the hydrolysis reaction, it was possible to recover the enantiomerically enriched aldehydes.
Resumo:
During this internship, the α-alkylation of branched aldehydes was taken into consideration. An enantiopure Betti’s base derivative was used as catalyst, applying a new concept in catalysis: organocatalysis. The Betti’s base may be of particular interest for organic chemists working in the field of “reactions catalysed by enantiopure small organic molecules”, in particular for the ones interested in enantiopure primary amines. The potential of secondary amines as catalysts has certainly been known for years. It is indeed more innovative to conduct reactions using primary amine derivatives as catalyst. In this work, the efficacy of the primary amine was checked first. Then, the focus was set on finding optimal reaction conditions. Finally, to have a more complete picture of the structure of the compounds used in the project, experimental and computational IR spectra were compared, after the method was validated. Durante il periodo di tirocinio è stata presa in esame la reazione di α-alchilazione di aldeidi branched, utilizzando un derivato dell’ammina di Betti come catalizzatore enantiopuro ed applicando un nuovo tipo di catalisi: l’organocatalisi. Questi composti possono essere di particolare interesse per lavori in chimica organica, nel campo delle reazioni catalizzate da “piccole” molecole organiche, in particolare da ammine primarie a chiralità definita; la potenzialità delle ammine secondarie chirali come catalizzatori è certamente nota da anni, ma innovativo è condurre il tutto con l’impiego di un derivato amminico primario. Altri aspetti significativi sono gli apparenti e innumerevoli vantaggi, dal punto di vista economico ed ambientale, oltre che operativo e sintetico, derivanti dal nuovo tipo di catalisi. In un primo momento è stata verificata l’efficacia dell’ammina primaria sintetizzata nella reazione in progetto, quindi sono state individuate le condizioni di reazione ottimali. Infine, per un’analisi più completa di alcune molecole organiche e dopo un’opportuna validazione del metodo utilizzato, sono stati ottenuti a livello computazionale gli spettri IR delle molecole di sintesi prodotto e catalizzatore.
Resumo:
In this thesis, the development of asymmetric α-alkylation of aldehydes using two new organocatalysts is described. Nowadays organocatalized asymmetric synthesis uses preferentially primary or secondary amines. In our case two new Betti bases derivatives have been used as organocatalysts. We tried to find a method based on resolution to obtain both enantiomers with ee major than 90%. At the end we tried them in an organocatalytic processes which involve indole derivatives and aldehydes as substrates. In questa tesi è descritto lo sviluppo del processo di alfa-alchilazione di aldeidi utilizzando due nuovi catalizzatori organici chirali. Al giorno d’oggi la sintesi asimmetrica organo catalitica sfrutta principalmente ammine primarie e secondarie chirali. Come organo catalizzatori, sono stati utilizzati due nuovi derivati della base di Betti. E’ stato ricercato un metodo che permettesse di risolvere entrambi gli enantiomeri e che permettesse di ottenere un eccesso enantiomerico maggiore del 90%. Infine questi catalizzatori sono stati utilizzati e ottimizzati in micro-processi che utilizzano un substrato indolico e di un’aldeide.
Resumo:
In this project we researched and optimized an new synthetic route for R-Equol, a molecule that is attracting increasing interest for the medicine because of its phytoestrogenic properties and the chemoprevention of breast cancer. To reach this objective we start, from smaller building blocks, with the synthesis of Daidzein followed by a chemoselective borane reduction to obtain an olefin that will be hydrogenated enantioselectively with a commercial Ir-BARF catalyst. The increasing success of these catalysts even with this genre of substrates has already given good results with different catalysts in both e.e. and yield. For further researches we deuterate the Equol in the aliphatic O-ring and attempt a secondary synthetic route with an hydrogenation using QN-modified Pd.
Resumo:
The importance of the β-amino nitroalkanes is due to their high versatility allowing a straightforward entry to a variety of nitrogen-containing chiral building blocks; furthermore obtaining them in enantiopure form allows their use in the synthesis of biologically active compounds or their utilization as chiral ligands for different uses. In this work, a reaction for obtaining enantiopure β-amino nitroalkanes through asymmetric organocatalysis has been developed. The synthetic strategy adopted for the obtainment of these compounds was based on an asymmetric reduction of β-amino nitroolefins in a transfer hydrogenation reaction, involving an Hantzsch ester as hydrogen source and a chiral thiourea as organic catalyst. After the optimization of the reaction conditions over the β-acyl-amino nitrostyrene, we tested the reaction generality over other aromatic compound and for Boc protected substrate both aromatic and aliphatic. A scale-up of the reaction was also performed.
Resumo:
This thesis work contains an overview of potential alternative options to couple formate produced from CO2 with other coupling partners than formate itself. Ultimately, the intent is to produce high value chemicals from CO2 at a high selectivity and conversion, whilst keeping the required utility of electrons in the electrochemical CO2 conversion at a minimum. To select and find new coupling partners, a framework was developed upon which a broad variety of candidates were assessed and ranked. A multi-stage process was used to select first potential classes of molecules. For each class, a variety of commercially available compounds was analysed in depth for its potential suitability in the reaction with the active carbonite intermediate. This analysis has shown that a wide variety of factors come into play and especially the reactivity of the hydride catalyst poses a mayor challenge. The three major potential classes of compounds suitable for the coupling are carbon oxides (CO2 & CO), and aldehydes. As a second step the remaining options were ranked to identify which compound to test first. In this ranking the reactants sustainability, ease of commercial operation and commercial attractiveness of the compound were considered. The highest-ranking compounds that proposed the highest potential are CO2, benzaldehyde and para-formaldehyde. In proof-of-principle experiments CO2 could successfully be incorporated in the form of carbonate, oxalate and potentially formate. The overall incorporation efficiency based on the hydride consumption was shown to be 50%. It is suggested to continue this work with mechanistic studies to understand the reaction in detail as, based on further gained knowledge, the reaction can then be optimized towards optimal CO2 incorporation in the form of oxalate.
Resumo:
One of the most important scientific and environmental issues is reducing global dependence on fossil sources and one of the solutions is to use biomass as feedstock. In particular, the use of lignocellulosic biomass to obtain molecules with considerable commercial importance is gaining more and more interest. Lignin, the most recalcitrant part of lignocellulosic biomass, is a valuable source of sustainable and renewable aromatic molecules, currently produced from petrochemical processes. Vanillin, one of the most important aromatic aldehydes on an industrial level, can be obtained through catalytic lignin oxidation. An alternative to the conventional catalytic oxidation process is the electro-catalytic process, which can be carried out at ambient temperature and pressure, using water as solvent, and it can be considered as a renewable energy storage. In this thesis, the electrocatalytic oxidation of Kraft and Dealkaline lignin in NaOH was investigated over Ni foam catalysts. The effect of the reaction parameters (i.e. time, applied potential, lignin concentration, NaOH concentration, and temperature) on the yields of vanillin and other valuable products was evaluated. After the screening of the reaction conditions, a systematic study of the contribution of the homogeneous reaction (lignin depolymerization due to the basic solvent) to the yield of the product was accomplished. Finally, considering the obtained results, an alternative reaction procedure was proposed.
Study of the activity and enantioselectivity of alginate-based catalysts in Friedel-Crafts reactions
Resumo:
This thesis is part of a long-term project which aims to demonstrate for the first time that alginate gel beads can be used as chiral heterogeneous catalysts for enantioselective reactions. Alginate barium beads were prepared as previously optimized and applied to the Friedel-Crafts reaction between indoles and nitroalkenes. New substrates were tested, showing that the reaction can accommodate different nitroalkenes and indoles, affording the corresponding products with moderate yields and good enantioselectivities. However, aliphatic nitroalkenes cannot be used as they degrade under the catalytic reaction conditions. Preliminary study on the recyclability of the heterogeneous catalyst indicated a moderate stability of the catalyst, which can be used for few cycles with a slight erosion of enantioinducing power. Some directions for future improvements (storage and work-up solvent, use of ultrasonic bath) have been suggested.