5 resultados para 845

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks can transform our buildings in smart environments, improving comfort, energy efficiency and safety. Today however, wireless sensor networks are not considered reliable enough for being deployed on large scale. In this thesis, we study the main failure causes for wireless sensor networks, the existing solutions to improve reliability and investigate the possibility to implement self-diagnosis through power consumption measurements on the sensor nodes. Especially, we focus our interest on faults that generate in-range errors: those are wrong readings but belong to the range of the sensor and can therefore be missed by external observers. Using a wireless sensor network deployed in the R\&D building of NXP at the High Tech Campus of Eindhoven, we performed a power consumption characterization of the Wireless Autonomous Sensor (WAS), and studied through some experiments the effect that faults have in the power consumption of the sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La modulazione a durata d'impulso (PWM) è utilizzata soprattutto perchè permette di ottenere alta efficenza energetica. In ambito accademico è stato proposto un modulatore PWM che sfrutta la tecnica di noise shaping, Sigma Delta, per avere elevata fedeltà. Il lavoro di questa tesi è stato l'implementazione su FPGA del modulatore Sigma DeltaDigitale utilizzato: quarto ordine, con quantizzatore a 4 bit e SNR in banda di 60 dB. Il dimensionamento è stato fatto determinando l'effetto che la lunghezza delle parole dei segnali ha sul rumore prodotto dal sistema. Questo studio è stato svolto con analisi euristiche ed algoritmi di ricerca implementati in ambiente MATLAB. Lo studio fatto è di carattere generale ed estendibile a generiche architetture Sigma Delta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progettazione di un sistema di misura contactless per la tensione, da integrare in un nodo sensore di una Wireless Sensor Network per Smart Metering Distribuito

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tecniche per l'acquisizione a basso consumo di segnali sparsi tramite compressed sensing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questo lavoro è iniziato con uno studio teorico delle principali tecniche di classificazione di immagini note in letteratura, con particolare attenzione ai più diffusi modelli di rappresentazione dell’immagine, quali il modello Bag of Visual Words, e ai principali strumenti di Apprendimento Automatico (Machine Learning). In seguito si è focalizzata l’attenzione sulla analisi di ciò che costituisce lo stato dell’arte per la classificazione delle immagini, ovvero il Deep Learning. Per sperimentare i vantaggi dell’insieme di metodologie di Image Classification, si è fatto uso di Torch7, un framework di calcolo numerico, utilizzabile mediante il linguaggio di scripting Lua, open source, con ampio supporto alle metodologie allo stato dell’arte di Deep Learning. Tramite Torch7 è stata implementata la vera e propria classificazione di immagini poiché questo framework, grazie anche al lavoro di analisi portato avanti da alcuni miei colleghi in precedenza, è risultato essere molto efficace nel categorizzare oggetti in immagini. Le immagini su cui si sono basati i test sperimentali, appartengono a un dataset creato ad hoc per il sistema di visione 3D con la finalità di sperimentare il sistema per individui ipovedenti e non vedenti; in esso sono presenti alcuni tra i principali ostacoli che un ipovedente può incontrare nella propria quotidianità. In particolare il dataset si compone di potenziali ostacoli relativi a una ipotetica situazione di utilizzo all’aperto. Dopo avere stabilito dunque che Torch7 fosse il supporto da usare per la classificazione, l’attenzione si è concentrata sulla possibilità di sfruttare la Visione Stereo per aumentare l’accuratezza della classificazione stessa. Infatti, le immagini appartenenti al dataset sopra citato sono state acquisite mediante una Stereo Camera con elaborazione su FPGA sviluppata dal gruppo di ricerca presso il quale è stato svolto questo lavoro. Ciò ha permesso di utilizzare informazioni di tipo 3D, quali il livello di depth (profondità) di ogni oggetto appartenente all’immagine, per segmentare, attraverso un algoritmo realizzato in C++, gli oggetti di interesse, escludendo il resto della scena. L’ultima fase del lavoro è stata quella di testare Torch7 sul dataset di immagini, preventivamente segmentate attraverso l’algoritmo di segmentazione appena delineato, al fine di eseguire il riconoscimento della tipologia di ostacolo individuato dal sistema.