2 resultados para 380106 Developmental Psychology and Ageing
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The high energy consumption caused by the building sector and the continuous growth and ageing of the existing housing stock show the importance of housing renovation to improve the quality of the environment. This research compares the environmental performance of flat roof systems (insulation, roofing membrane and covering layer) using Life Cycle Assessment (LCA). The aim is to give indications on how to improve the environmental performance of housing. This research uses a reference building located in the Netherlands and considers environmental impacts related to materials, energy consumption for heating and maintenance activities. It indicates impact scores for each material taking into account interconnections between the layers and between the different parts of the life cycle. It compares the environmental and economic performances of PV panels and of different materials and thermal resistance values for the insulation. These comparisons show that PV panels are convenient from an environmental and economic point of view. The same is true for the insulation layer, especially for materials as PIR (polyisocyanurate) and EPS (expanded polystyrene). It shows that energy consumption for heating causes a larger share of impact scores than production of the materials and maintenance activities. The insulation also causes larger impact scores comparing to roofing membrane and covering layer. The results show which materials are preferable for flat roof renovation and what causes the largest shares of impact. This gives indication to the roofers and to other stakeholders about how to reduce the environmental impact of the existing housing stock.
Resumo:
The current design life of nuclear power plant (NPP) could potentially be extended to 80 years. During this extended plant life, all safety and operationally relevant Instrumentation & Control (I&C) systems are required to meet their designed performance requirements to ensure safe and reliable operation of the NPP, both during normal operation and subsequent to design base events. This in turn requires an adequate and documented qualification and aging management program. It is known that electrical insulation of I&C cables used in safety related circuits can degrade during their life, due to the aging effect of environmental stresses, such as temperature, radiation, vibration, etc., particularly if located in the containment area of the NPP. Thus several condition monitoring techniques are required to assess the state of the insulation. Such techniques can be used to establish a residual lifetime, based on the relationship between condition indicators and ageing stresses, hence, to support a preventive and effective maintenance program. The object of this thesis is to investigate potential electrical aging indicators (diagnostic markers) testing various I&C cable insulations subjected to an accelerated multi-stress (thermal and radiation) aging.