2 resultados para 32F25 (Primary), 53C42 (Secondary)
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis, the development of asymmetric α-alkylation of aldehydes using two new organocatalysts is described. Nowadays organocatalized asymmetric synthesis uses preferentially primary or secondary amines. In our case two new Betti bases derivatives have been used as organocatalysts. We tried to find a method based on resolution to obtain both enantiomers with ee major than 90%. At the end we tried them in an organocatalytic processes which involve indole derivatives and aldehydes as substrates. In questa tesi è descritto lo sviluppo del processo di alfa-alchilazione di aldeidi utilizzando due nuovi catalizzatori organici chirali. Al giorno d’oggi la sintesi asimmetrica organo catalitica sfrutta principalmente ammine primarie e secondarie chirali. Come organo catalizzatori, sono stati utilizzati due nuovi derivati della base di Betti. E’ stato ricercato un metodo che permettesse di risolvere entrambi gli enantiomeri e che permettesse di ottenere un eccesso enantiomerico maggiore del 90%. Infine questi catalizzatori sono stati utilizzati e ottimizzati in micro-processi che utilizzano un substrato indolico e di un’aldeide.
Resumo:
Multifunctional Structures (MFS) represent one of the most promising disruptive technologies in the space industry. The possibility to merge spacecraft primary and secondary structures as well as attitude control, power management and onboard computing functions is expected to allow for mass, volume and integration effort savings. Additionally, this will bring the modular construction of spacecraft to a whole new level, by making the development and integration of spacecraft modules, or building blocks, leaner, reducing lead times from commissioning to launch from the current 3-6 years down to the order of 10 months, as foreseen by the latest Operationally Responsive Space (ORS) initiatives. Several basic functionalities have been integrated and tested in specimens of various natures over the last two decades. However, a more integrated, system-level approach was yet to be developed. The activity reported in this thesis was focused on the system-level approach to multifunctional structures for spacecraft, namely in the context of nano- and micro-satellites. This thesis documents the work undertaken in the context of the MFS program promoted by the European Space Agency under the Technology Readiness Program (TRP): a feasibility study, including specimens manufacturing and testing. The work sequence covered a state of the art review, with particular attention to traditional modular architectures implemented in ALMASat-1 and ALMASat-EO satellites, and requirements definition, followed by the development of a modular multi-purpose nano-spacecraft concept, and finally by the design, integration and testing of integrated MFS specimens. The approach for the integration of several critical functionalities into nano-spacecraft modules was validated and the overall performance of the system was verified through relevant functional and environmental testing at University of Bologna and University of Southampton laboratories.