4 resultados para 2H-pyran-2-one

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is part of a larger project aimed at obtaining compounds of industrial interest from renewable sources. The work is particularly aimed to investigate the reactivity of 2,5-bis-hydroxymethylfuran (BHMF), an important building block of organic nature easily obtainable from biomass, with acid catalysis. Through the study of the reactivity of BHMF in water, in the presence of an heterogeneous acid catalyst (Amberlyst 15), has been developed a new synthetic method for the preparation of α-6-hydroxy-6-methyl-4-enyl-2H-pyran-3-one a derivative whose molecular skeleton is similar to that of natural products which are used in pharmaceutical chemistry. The product is obtained in milder conditions and with better selectivity with respect to the strongly oxidizing conditions with which it is prepared in the literature starting from different precursors containing furan ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The starting material for this project was the highly functionalized compound 3,3,4,4- tetraethoxybut-1-yne (TEB) and it can be prepared from ethyl vinyl ether by a 4-steps synthesis. The third and the fourth step in TEB synthesis were sensitive to reaction conditions, so it was developed a strategy to try to optimize the third step and obtain TEB with higher yields. An approach, which tries to optimize also the fourth step, will be developed in further works. Several γ-hydroxy-α,β-unsaturated acetylenic ketones can be prepared from 3,3,4,4- tetraethoxybut-1-yne. TEB and γ-hydroxy-α,β-unsaturated acetylenic ketones have been previously synthesized in good yields using various reaction routes. In this work will be shown the synthesis of 1,1-diethoxy-5-hydroxyhex-3-yn-2-one, 1,1-diethoxy-5-hydroxyundec-3-yn-2-one and 1,1-diethoxy-5-hydroxydodec-3-yn-2-one, which will react with ethyl acetoacetate to give, respectively, ethyl 4-(3,3-diethoxy-2-oxopropyl)-2,5-dimethylfuran-3-carboxylate, ethyl 4-(3,3-diethoxy-2-oxopropyl)-5-hexyl-2-methylfuran-3-carboxylate and ethyl 4-(3,3-diethoxy-2-oxopropyl)- 5-heptyl-2-methylfuran-3-carboxylate furan derivatives. This thesis project was carried out during the year 2011, at the Department of Chemistry of the University of Bergen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we have examined the activity and selectivity of new catalysts for the single-stage production of methyl isobutyl ketone (MIBK, 4- methyl-2-pentanone) from acetone (both in liquid and gas phase), using a fixed bed reactor operated in the temperature range between 373 and 473 K. The main reaction pathways for the synthesis of MIBK from acetone are given in Fig.1. The first step is the self condensation of acetone to diacetone alcohol (DAA, 4-hydroxy-4-methyl-2-pentanone); the second step is the dehydration of DAA to mesityl oxide (MO, 4-methyl-3-penten-2-one); the final step is the selective hydrogenation of the carbon–carbon double bond of MO to form MIBK. The most commonly observed side reactions are over-condensations and unselective hydrogenations (also shown in Fig.1). Two types of catalysts were studied: i)Pd supported on MgO-SiO2 mixed oxides with ratio of Mg to Si, synthetized using Ohnishi’s method and ii)Pd supported on alumina doped with 5% or 10% of MgO. The different Mg-Si and Mg-Al catalysts were characterized by different techniques (XRD, BET, SEM, NH3-TPD and CO2-TPD) and tested under different conditions in the condensation of acetone to diacetone alcohol and its dehydration to mesityl oxide to enhance the activity. Palladium was chosen as metal component, and its hydrogenation activity was studied. A low hydrogenation activity negatively affects the acetone conversion and promotes the production of mesityl oxide. Hydrogenation conditions being too severe may favor the unwanted hydrogenation of acetone to 2-propanol and of MIBK to methyl isobutyl carbinol (MIBC, 4-methyl-2-pentanol) but this effect is less detrimental to the MIBK selectivity than an unsufficient hydrogenation activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questo progetto è studiare e sviluppare una sintesi alternativa del dimetiladipato (DMA), a partire da ciclopentanone (CPO) e dimetilcarbonato (DMC), con l’utilizzo di un ossido misto di zinco e magnesio come catalizzatore eterogeneo. Le prove sono state svolte in fase liquida con un reattore operante in condizioni discontinue (batch). In particolare, si è investigato l’effetto di diversi parametri operativi sulla reazione quali il tempo, il rapporto molare di alimentazione dei due reagenti, il carico catalitico utilizzato, il rapporto atomico Zn/Mg nel catalizzatore e la temperatura. Una volta individuate le migliori condizioni, si è valutata la possibilità di svolgere la reazione in due step, per cercare di incrementare la resa di DMA. Inizialmente, si è studiato solo il secondo step, cioè la reazione fra l’intermedio (carbossimetilciclopentan-2-one) e il metanolo e si sono ottenute rese di DMA del 92% con un rapporto MeOH:Intermedio di 150:1. Dopo aver ricavato le migliori condizioni di tale reazione, si è svolta la reazione completa a due step e si è dimostrato che è possibile condurre il secondo step a temperature più basse rispetto al primo, per convertire l’intermedio rimasto a DMA e migliorarne la resa dal 32% al 40%.