5 resultados para 2016 model
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The present work studies a km-scale data assimilation scheme based on a LETKF developed for the COSMO model. The aim is to evaluate the impact of the assimilation of two different types of data: temperature, humidity, pressure and wind data from conventional networks (SYNOP, TEMP, AIREP reports) and 3d reflectivity from radar volume. A 3-hourly continuous assimilation cycle has been implemented over an Italian domain, based on a 20 member ensemble, with boundary conditions provided from ECMWF ENS. Three different experiments have been run for evaluating the performance of the assimilation on one week in October 2014 during which Genova flood and Parma flood took place: a control run of the data assimilation cycle with assimilation of data from conventional networks only, a second run in which the SPPT scheme is activated into the COSMO model, a third run in which also reflectivity volumes from meteorological radar are assimilated. Objective evaluation of the experiments has been carried out both on case studies and on the entire week: check of the analysis increments, computing the Desroziers statistics for SYNOP, TEMP, AIREP and RADAR, over the Italian domain, verification of the analyses against data not assimilated (temperature at the lowest model level objectively verified against SYNOP data), and objective verification of the deterministic forecasts initialised with the KENDA analyses for each of the three experiments.
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
Resumo:
The shallow water configuration of the gulf of Trieste allows the propagation of the stress due to wind and waves along the whole water column down to the bottom. When the stress overcomes a particular threshold it produces resuspension processes of the benthic detritus. The benthic sediments in the North Adriatic are rich of organic matter, transported here by many rivers. This biological active particulate, when remaining in the water, can be transported in all the Adriatic basin by the basin-wide circulation. In this work is presented a first implementation of a resuspension/deposition submodel in the oceanographic coupled physical-biogeochemical 1-dimensional numerical model POM-BFM. At first has been considered the only climatological wind stress forcing, next has been introduced, on the surface, an annual cycle of wave motion and finally have been imposed some exceptional wave event in different periods of the year. The results show a strong relationship between the efficiency of the resuspension process and the stratification of the water column. During summer the strong stratification can contained a great quantity of suspended matter near to the bottom, while during winter even a low concentration of particulate can reach the surface and remains into the water for several months without settling and influencing the biogeochemical system. Looking at the biologic effects, the organic particulate, injected in the water column, allow a sudden growth of the pelagic bacteria which competes with the phytoplankton for nutrients strongly inhibiting its growth. This happen especially during summer when the suspended benthic detritus concentration is greater.
Resumo:
In questo studio, un multi-model ensemble è stato implementato e verificato, seguendo una delle priorità di ricerca del Subseasonal to Seasonal Prediction Project (S2S). Una regressione lineare è stata applicata ad un insieme di previsioni di ensemble su date passate, prodotte dai centri di previsione mensile del CNR-ISAC e ECMWF-IFS. Ognuna di queste contiene un membro di controllo e quattro elementi perturbati. Le variabili scelte per l'analisi sono l'altezza geopotenziale a 500 hPa, la temperatura a 850 hPa e la temperatura a 2 metri, la griglia spaziale ha risoluzione 1 ◦ × 1 ◦ lat-lon e sono stati utilizzati gli inverni dal 1990 al 2010. Le rianalisi di ERA-Interim sono utilizzate sia per realizzare la regressione, sia nella validazione dei risultati, mediante stimatori nonprobabilistici come lo scarto quadratico medio (RMSE) e la correlazione delle anomalie. Successivamente, tecniche di Model Output Statistics (MOS) e Direct Model Output (DMO) sono applicate al multi-model ensemble per ottenere previsioni probabilistiche per la media settimanale delle anomalie di temperatura a 2 metri. I metodi MOS utilizzati sono la regressione logistica e la regressione Gaussiana non-omogenea, mentre quelli DMO sono il democratic voting e il Tukey plotting position. Queste tecniche sono applicate anche ai singoli modelli in modo da effettuare confronti basati su stimatori probabilistici, come il ranked probability skill score, il discrete ranked probability skill score e il reliability diagram. Entrambe le tipologie di stimatori mostrano come il multi-model abbia migliori performance rispetto ai singoli modelli. Inoltre, i valori più alti di stimatori probabilistici sono ottenuti usando una regressione logistica sulla sola media di ensemble. Applicando la regressione a dataset di dimensione ridotta, abbiamo realizzato una curva di apprendimento che mostra come un aumento del numero di date nella fase di addestramento non produrrebbe ulteriori miglioramenti.
Resumo:
The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.