2 resultados para 1st and 2nd cycles

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was conducted to investigate the influence of restricted food access on Solea senegalensis behaviour and daily expression of clock genes in central (diencephalon and optic tectum) and pheripheral (liver) tissues. The Senegalese sole is a marine teleost fish belonging to the Class of Actinopterygii, Order Pleuronectiformes and Family Soleidae. Its geographical distribution in the Mediterranean sea is fairly broad, covering the south and east of the Iberian Peninsula, the North of Africa and Middle East until the coast of Turkey. From a commercial perspective Solea senegalensis has acquired in recent years, a key role in aquacolture industry of the Iberian Peninsula. The Senegalese sole is also acquiring an important relevance in chronobiological studies as the number of published works focused on the sole circadian system has increased in the last few years. The molecular mechanisms underlying sole circadian rhythms has also been explored recently, both in adults and developing sole. Moreover, the consideration of the Pleuronectiformes Order as one of the most evolved teleost groups make the Senegalese sole a species of high interest under a comparative and phylogenetic point of view. All these facts have reinforced the election of Senegalese sole as model species for the present study. The animals were kept under 12L:12D photoperiod conditions and divided into three experimental groups depending on the feeding time: fed at midlight (ML), middark (MD) or random (RND) times. Throughout the experiment, the existence of a daily activity rhythm and it synchronization to the light-dark and feeding cycles was checked. To this end locomotor activity was registred by means of two infrared photocells placed in pvc tube 10 cm below the water surface (upper photocell) and the other one was located 10 cm above the bottom of the tank (bottom photocell). The photocell were connected to a computer so that every time a fish interrupted the infrared light beam, it produced an output signal that was recorded. The number of light beam interruptions was stored every 10 minutes by specialized software for data acquisition.