2 resultados para 080703 Human Information Behaviour
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The central objective of research in Information Retrieval (IR) is to discover new techniques to retrieve relevant information in order to satisfy an Information Need. The Information Need is satisfied when relevant information can be provided to the user. In IR, relevance is a fundamental concept which has changed over time, from popular to personal, i.e., what was considered relevant before was information for the whole population, but what is considered relevant now is specific information for each user. Hence, there is a need to connect the behavior of the system to the condition of a particular person and his social context; thereby an interdisciplinary sector called Human-Centered Computing was born. For the modern search engine, the information extracted for the individual user is crucial. According to the Personalized Search (PS), two different techniques are necessary to personalize a search: contextualization (interconnected conditions that occur in an activity), and individualization (characteristics that distinguish an individual). This movement of focus to the individual's need undermines the rigid linearity of the classical model overtaken the ``berry picking'' model which explains that the terms change thanks to the informational feedback received from the search activity introducing the concept of evolution of search terms. The development of Information Foraging theory, which observed the correlations between animal foraging and human information foraging, also contributed to this transformation through attempts to optimize the cost-benefit ratio. This thesis arose from the need to satisfy human individuality when searching for information, and it develops a synergistic collaboration between the frontiers of technological innovation and the recent advances in IR. The search method developed exploits what is relevant for the user by changing radically the way in which an Information Need is expressed, because now it is expressed through the generation of the query and its own context. As a matter of fact the method was born under the pretense to improve the quality of search by rewriting the query based on the contexts automatically generated from a local knowledge base. Furthermore, the idea of optimizing each IR system has led to develop it as a middleware of interaction between the user and the IR system. Thereby the system has just two possible actions: rewriting the query, and reordering the result. Equivalent actions to the approach was described from the PS that generally exploits information derived from analysis of user behavior, while the proposed approach exploits knowledge provided by the user. The thesis went further to generate a novel method for an assessment procedure, according to the "Cranfield paradigm", in order to evaluate this type of IR systems. The results achieved are interesting considering both the effectiveness achieved and the innovative approach undertaken together with the several applications inspired using a local knowledge base.
Resumo:
Ventricular cells are immersed in a bath of electrolytes and these ions are essential for a healthy heart and a regular rhythm. Maintaining physiological concentration of them is fundamental for reducing arrhythmias and risk of sudden cardiac death, especially in haemodialysis patients and in the heart diseases treatments. Models of electrically activity of the heart based on mathematical formulation are a part of the efforts to improve the understanding and prediction of heart behaviour. Modern models incorporate the extensive and ever increasing amounts of experimental data in incorporating biophysically detailed mechanisms to allow the detailed study of molecular and subcellular mechanisms of heart disease. The goal of this project was to simulate the effects of changes in potassium and calcium concentrations in the extracellular space between experimental data and and a description incorpored into two modern biophysically detailed models (Grandi et al. Model; O’Hara Rudy Model). Moreover the task was to analyze the changes in the ventricular electrical activity, in particular by studying the modifications on the simulated electrocardiographic signal. We used the cellular information obtained by the heart models in order to build a 1D tissue description. The fibre is composed by 165 cells, it is divided in four groups to differentiate the cell types that compound human ventricular tissue. The main results are the following: Grandi et al. (GBP) model is not even able to reproduce the correct action potential profile in hyperkalemia. Data from hospitalized patients indicates that the action potential duration (APD) should be shorter than physiological state but in this model we have the opposite. From the potassium point of view the results obtained by using O’Hara model (ORD) are in agreement with experimental data for the single cell action potential in hypokalemia and hyperkalemia, most of the currents follow the data from literature. In the 1D simulations we were able to reproduce ECGs signal in most the potassium concentrations we selected for this study and we collected data that can help physician in understanding what happens in ventricular cells during electrolyte disorder. However the model fails in the conduction of the stimulus under hyperkalemic conditions. The model emphasized the ECG modifications when the K+ is slightly more than physiological value. In the calcium setting using the ORD model we found an APD shortening in hypocalcaemia and an APD lengthening in hypercalcaemia, i.e. the opposite to experimental observation. This wrong behaviour is kept in one dimensional simulations bringing a longer QT interval in the ECG under higher [Ca2+]o conditions and vice versa. In conclusion it has highlighted that the actual ventricular models present in literature, even if they are useful in the original form, they need an improvement in the sensitivity of these two important electrolytes. We suggest an use of the GBP model with modifications introduced by Carro et al. who understood that the failure of this model is related to the Shannon et al. model (a rabbit model) from which the GBP model was built. The ORD model should be modified in the Ca2+ - dependent IcaL and in the influence of the Iks in the action potential for letting it him produce a correct action potential under different calcium concentrations. In the 1D tissue maybe a heterogeneity setting of intra and extracellular conductances for the different cell types should improve a reproduction of the ECG signal.