2 resultados para 080205 Numerical Computation
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.
Resumo:
Questo documento descrive gran parte del lavoro svolto durante un periodo di studio di sei mesi all’International Centre for Geohazards (ICG) di Oslo. Seguendo la linea guida dettata nel titolo, sono stati affrontati diversi aspetti riguardanti la modellazione numerica dei pendii quali l’influenza delle condizioni al contorno e delle proporzioni del modello, la back-analysis di eventi di scivolamento e l’applicazione delle analisi di stabilità monodimensionali. La realizzazione di semplici modelli con il programma agli elementi finiti PLAXIS (Brinkgreve et al., 2008) ha consentito di analizzare le prestazioni dei modelli numerici riguardo all’influenza delle condizioni al contorno confrontandoli con un calcolo teorico del fattore di amplificazione. Questa serie di test ha consentito di stabilire alcune linee guida per la realizzazione di test con un buon livello di affidabilità. Alcuni case-history, in particolare quello di Las Colinas (El Salvador), sono stati modellati allo scopo di applicare e verificare i risultati ottenuti con i semplici modelli sopracitati. Inoltre sono state svolte analisi di sensitività alla dimensione della mesh e ai parametri di smorzamento e di elasticità. I risultati hanno evidenziato una forte dipendenza dei risultati dai parametri di smorzamento, rilevando l’importanza di una corretta valutazione di questa grandezza. In ultima battuta ci si è occupati dell’accuratezza e dell’applicabilità dei modelli monodimensionali. I risultati di alcuni modelli monodimensionali realizzati con il software Quiver (Kaynia, 2009) sono stati confrontati con quelli ottenuti da modelli bidimensionali. Dal confronto è risultato un buon grado di approssimazione accompagnato da un margine di sicurezza costante. Le analisi monodimensionali sono poi state utilizzate per la verifica di sensitività. I risultati di questo lavoro sono qui presentati e accompagnati da suggerimenti qualitativi e quantitativi per la realizzazione di modelli bidimensionali affidabili. Inoltre si descrive la possibilità di utilizzare modelli monodimensionali in caso d’incertezze sui parametri. Dai risultati osservati emerge la possibilità di ottenere un risparmio di tempo nella realizzazione di importanti indagini di sensitività.