2 resultados para 060202 Community Ecology
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Human activities strongly influence environmental processes, and while human domination increases, biodiversity progressively declines in ecosystems worldwide. High genetic and phenotypic variability ensures functionality and stability of ecosystem processes through time and increases the resilience and the adaptive capacity of populations and communities, while a reduction in functional diversity leads to a decrease in the ability to respond in a changing environment. Pollution is becoming one of the major threats in aquatic ecosystem, and pharmaceutical and personal care products (PPCPs) in particular are a relatively new group of environmental contaminants suspected to have adverse effects on aquatic organisms. There is still a lake of knowledge on the responses of communities to complex chemical mixtures in the environment. We used an individual-trait-based approach to assess the response of a phytoplankton community in a scenario of combined pollution and environmental change (steady increasing in temperature). We manipulated individual-level trait diversity directly (by filtering out size classes) and indirectly (through exposure to PPCPs mixture), and studied how reduction in trait-diversity affected community structure, production of biomass and the ability of the community to track a changing environment. We found that exposure to PPCPs slows down the ability of the community to respond to an increasing temperature. Our study also highlights how physiological responses (induced by PPCPs exposure) are important for ecosystem processes: although from an ecological point of view experimental communities converged to a similar structure, they were functionally different.
Resumo:
The aim of this thesis was to quantify experimentally in the field the effects of different timing regimes of hypoxia on the structure of benthic communities in a transitional habitat. The experiment was performed from 8 July to 29 July 2019 in a shallow subtidal area in Pialassa Baiona (Italy), a lagoon characterized by mixing regimes dominated by the tide. The benthic community was isolated using cylinders 15,5Cm x 20Cm size. Hypoxic conditions were imposed by covering the treated cylinders with a black plastic bag while control cylinders were left uncovered. We created 4 different timing regimes of hypoxia by manipulating both the duration of hypoxia (4 or 8 days) as well as the ratio between the duration of subsequent periods of hypoxia and the duration of a normoxic period between subsequent hypoxic events (D4R3/2, D8R3/2). At the end of each experimental trial, the benthic communities within each pot were retrieved, sieved in the field and subsequent analyzed in the laboratory where organisms were identified and counted. Results showed that benthic organism were generally negatively affected by hypoxic stress events. As expected, longer hypoxic events caused a stronger decrease of benthic community abundance. When the hypoxic events were interrupted by the normoxic event there were two different results. If the hypoxic period was too long, the normoxic period didn’t cause a positive recovery effect, and further decline of the benthic community was observed. Conversely normoxia had positive effects if the period of hypoxia was short enough not to compromise the benthic community. This resulted in a statistically significant interaction between the tested factors Duration and Ratio. Amphipods were the most sensitive organisms to hypoxia. We conclude that the effects of hypoxia can be greatly relieved by short normoxic periods if they happen frequently enough.