6 resultados para [INFO] Computer Science [cs]
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
A proposal for a virtual museum of computer science
Resumo:
In questa tesi si è voluta porre l’attenzione sulla suscettibilità alle alte temperature delle resine che li compongono. Lo studio del comportamento alle alte temperature delle resine utilizzate per l’applicazione dei materiali compositi è risultato un campo di studio ancora non completamente sviluppato, nel quale c’è ancora necessità di ricerche per meglio chiarire alcuni aspetti del comportamento. L’analisi di questi materiali si sviluppa partendo dal contesto storico, e procedendo successivamente ad una accurata classificazione delle varie tipologie di materiali compositi soffermandosi sull’ utilizzo nel campo civile degli FRP (Fiber Reinforced Polymer) e mettendone in risalto le proprietà meccaniche. Considerata l’influenza che il comportamento delle resine riveste nel comportamento alle alte temperature dei materiali compositi si è, per questi elementi, eseguita una classificazione in base alle loro proprietà fisico-chimiche e ne sono state esaminate le principali proprietà meccaniche e termiche quali il modulo elastico, la tensione di rottura, la temperatura di transizione vetrosa e il fenomeno del creep. Sono state successivamente eseguite delle prove sperimentali, effettuate presso il Laboratorio Resistenza Materiali e presso il Laboratorio del Dipartimento di Chimica Applicata e Scienza dei Materiali, su dei provini confezionati con otto differenti resine epossidiche. Per valutarne il comportamento alle alte temperature, le indagini sperimentali hanno valutato dapprima le temperature di transizione vetrosa delle resine in questione e, in seguito, le loro caratteristiche meccaniche. Dalla correlazione dei dati rilevati si sono cercati possibili legami tra le caratteristiche meccaniche e le proprietà termiche delle resine. Si sono infine valutati gli aspetti dell’applicazione degli FRP che possano influire sul comportamento del materiale composito soggetto alle alte temperature valutando delle possibili precauzioni che possano essere considerate in fase progettuale.
Resumo:
Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.
Resumo:
This thesis offers a practical and theoretical evaluations about gossip-epidemic algorithms, comparing those most common in the literature with new proposed algorithms and analyzing their behavior. Tests have been executed using one hundred graphs that has been randomly generated by Large Unstructured NEtwork Simulator (LUNES), a simulation software provided by Parallel and Distributed Simulation Research Group (PADS), of the Department of Computer Science, Università di Bologna and simulated using Advanced RTI System (ARTÌS), based on the High Level Architecture standard. Literatures algorithms have been analyzed and taken as base for new algorithms.
Resumo:
La presente tesi è uno studio sugli strumenti e le tecnologie che caratterizzano l'utilizzo degli open data, in particolare, nello sviluppo di applicazioni web moderne che fanno uso di questo tipo di dati.
Resumo:
The our reality is characterized by a constant progress and, to follow that, people need to stay up to date on the events. In a world with a lot of existing news, search for the ideal ones may be difficult, because the obstacles that make it arduous will be expanded more and more over time, due to the enrichment of data. In response, a great help is given by Information Retrieval, an interdisciplinary branch of computer science that deals with the management and the retrieval of the information. An IR system is developed to search for contents, contained in a reference dataset, considered relevant with respect to the need expressed by an interrogative query. To satisfy these ambitions, we must consider that most of the developed IR systems rely solely on textual similarity to identify relevant information, defining them as such when they include one or more keywords expressed by the query. The idea studied here is that this is not always sufficient, especially when it's necessary to manage large databases, as is the web. The existing solutions may generate low quality responses not allowing, to the users, a valid navigation through them. The intuition, to overcome these limitations, has been to define a new concept of relevance, to differently rank the results. So, the light was given to Temporal PageRank, a new proposal for the Web Information Retrieval that relies on a combination of several factors to increase the quality of research on the web. Temporal PageRank incorporates the advantages of a ranking algorithm, to prefer the information reported by web pages considered important by the context itself in which they reside, and the potential of techniques belonging to the world of the Temporal Information Retrieval, exploiting the temporal aspects of data, describing their chronological contexts. In this thesis, the new proposal is discussed, comparing its results with those achieved by the best known solutions, analyzing its strengths and its weaknesses.