6 resultados para , non-structural components
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis aims to understand the behavior of a low-rise unreinforced masonry building (URM), the typical residential house in the Netherlands, when subjected to low-intensity earthquakes. In fact, in the last decades, the Groningen region was hit by several shallow earthquakes caused by the extraction of natural gas. In particular, the focus is addressed to the internal non-structural walls and to their interaction with the structural parts of the building. A simple and cost-efficient 2D FEM model is developed, focused on the interfaces representing mortar layers that are present between the non-structural walls and the rest of the structure. As a reference for geometries and materials, it has been taken into consideration a prototype that was built in full-scale at the EUCENTRE laboratory of Pavia (Italy). Firstly, a quasi-static analysis is performed by gradually applying a prescribed displacement on the roof floor of the structure. Sensitivity analyses are conducted on some key parameters characterizing mortar. This analysis allows for the calibration of their values and the evaluation of the reliability of the model. Successively, a transient analysis is performed to effectively subject the model to a seismic action and hence also evaluate the mechanical response of the building over time. Moreover, it was possible to compare the results of this analysis with the displacements recorded in the experimental tests by creating a model representing the entire considered structure. As a result, some conditions for the model calibration are defined. The reliability of the model is then confirmed by both the reasonable results obtained from the sensitivity analysis and the compatibility of the values obtained for the top displacement of the roof floor of the experimental test, and the same value acquired from the structural model.
Resumo:
All structures are subjected to various loading conditions and combinations. For offshore structures, these loads include permanent loads, hydrostatic pressure, wave, current, and wind loads. Typically, sea environments in different geographical regions are characterized by the 100-year wave height, surface currents, and velocity speeds. The main problems associated with the commonly used, deterministic method is the fact that not all waves have the same period, and that the actual stochastic nature of the marine environment is not taken into account. Offshore steel structure fatigue design is done using the DNVGL-RP-0005:2016 standard which takes precedence over the DNV-RP-C203 standard (2012). Fatigue analysis is necessary for oil and gas producing offshore steel structures which were first constructed in the Gulf of Mexico North Sea (the 1930s) and later in the North Sea (1960s). Fatigue strength is commonly described by S-N curves which have been obtained by laboratory experiments. The rapid development of the Offshore wind industry has caused the exploration into deeper ocean areas and the adoption of new support structural concepts such as full lattice tower systems amongst others. The optimal design of offshore wind support structures including foundation, turbine towers, and transition piece components putting into consideration, economy, safety, and even the environment is a critical challenge. In this study, fatigue design challenges of transition pieces from decommissioned platforms for offshore wind energy are proposed to be discussed. The fatigue resistance of the material and structural components under uniaxial and multiaxial loading is introduced with the new fatigue design rules whilst considering the combination of global and local modeling using finite element analysis software programs.
Resumo:
Negli ultimi anni la ricerca ha fatto grandi passi avanti riguardo ai metodi di progetto e realizzazione delle strutture portanti degli edifici, a tal punto da renderle fortemente sicure sotto tutti i punti di vista. La nuova frontiera della ricerca sta quindi virando su aspetti che non erano mai stati in primo piano finora: gli elementi non-strutturali. Considerati fino ad oggi semplicemente carico accessorio, ci si rende sempre più conto della loro capacità di influire sui comportamenti delle strutture e sulla sicurezza di chi le occupa. Da qui nasce l’esigenza di questo grande progetto chiamato BNCs (Building Non-structural Component System), ideato dall’Università della California - San Diego e sponsorizzato dalle maggiori industrie impegnate nel campo delle costruzioni. Questo progetto, a cui ho preso parte, ha effettuato test su tavola vibrante di un edificio di cinque piani in scala reale, completamente arredato ed allestito dei più svariati elementi non-strutturali. Lo scopo della tesi in questione, ovviamente, riguarda l’identificazione strutturale e la verifica della sicurezza di uno di questi elementi non-strutturali: precisamente la torre di raffreddamento posta sul tetto dell’edificio (del peso di circa 3 tonnellate). Partendo da una verifica delle regole e calcoli di progetto, si è passato ad una fase di test sismici ed ispezioni post-test della torre stessa, infine tramite l’analisi dei dati raccolti durante i test e si è arrivati alla stesura di conclusioni.
Resumo:
Seismic assessment and seismic strengthening are the key issues need to be figured out during the process of protection and reusing of historical buildings. In this thesis the seismic behaviors of the hinged steel structure, a typical structure of historical buildings, i.e. hinged steel frames in Shanghai, China, were studied based on experimental investigations and theoretic analysis. How the non-structural members worked with the steel frames was analyzed thoroughly. Firstly, two 1/4 scale hinged steel frames were constructed based on the structural system of Bund 18, a historical building in Shanghai: M1 model without infill walls, M2 model with infill walls, and tested under the horizontal cyclic loads to investigate their seismic behavior. The Shaking Table Test and its results indicated that the seismic behavior of the hinged steel frames could be improved significantly with the help of non-structural members, i.e., surrounding elements outside the hinged steel frames and infilled walls. To specify, the columns are covered with bricks, they consist of I shape formed steel sections and steel plates, which are clenched together. The steel beams are connected to the steel column by steel angle, thus the structure should be considered as a hinged frame. And the infilled wall acted as a compression diagonal strut to withstand the horizontal load, therefore, the seismic capacity and stiffness of the hinged steel frames with infilled walls could be estimated by using the equivalent compression diagonal strut model. A SAP model has been constructed with the objective to perform a dynamic nonlinear analysis. The obtained results were compared with the results obtained from Shaking Table Test. The Test Results have validated that the influence of infill walls on seismic behavior can be estimated by using the equivalent diagonal strut model.
Resumo:
Given the rise in the emergence of new composite materials, their multifunctional properties, and possible applications in simple and complex structural components, there has been a need to unravel the characterization of these materials. The possibility of printing these conductive composite materials has opened a new area in the design of structural components which can conduct, transmit, and modulate electric signals with no limitation from complex geometry. Although several works have researched the behaviour of polymeric composites due to the immediate growth, however, the electrothermal behaviour of the material when subjected to varying AC applied voltage (Joule’s effect) has not been thoroughly researched. This study presents the characterization of the electrothermal behaviour of conductive composites of a polylactic acid matrix reinforced with conductive carbon black particles (CB-PLA). An understanding of this behaviour would contribute to the improved work in additive manufacturing of functional electro-mechanical conductive materials with potential application in energy systems, bioelectronics, etc. In this study, the electrothermal interplay is monitored under applied AC voltage, varying lengths, and filament printing orientations (longitudinal, oblique, and transverse). Each sample was printed using the fused deposition modeling technique such that each specimen has three different lengths (1L, 2L, 2.75L). To this end, deductions were made on properties that affect composite’s efficiency and life expectancy. The result of this study shows a great influence of printing orientation on material properties of 3D printed conductive composites of CB-PLA. The result also identifies the contribution of AC applied voltage to composites' stabilization time. This knowledge is important to provide experimental background for components' electrothermal interplay, estimate possible degradation and operating limits of composite structures when used in applications.
Resumo:
AlSi10Mg alloy is one of the most widely used alloys for producing structural components by Laser-based Powder Fusion (L-PBF) technology due to the high mechanical and technological properties. The present work aims to characterize mechanically and tribologically the L-PBF AlSi10Mg alloy subjected to both heat treatment and surface modification cycles. Specifically, the effects of three heat treatments on the tribological and mechanical properties of the alloy were analyzed: T5 (artificial aging at 160 °C for 4 h), T6 rapid solution heat treatment (solution heat treatment at 510 °C for 1h and aging at 160 °C for 6 h), and T6 benchmark (solution heat treatment at 540 °C for 1h and aging at 160 °C for 4 h), the latter used as a benchmark. The study highlighted how the better balance between strength and ductility properties induced by the introduction of heat treatments leads to lower wear resistance and not significant variations in the friction coefficient of the alloy. The tribological and mechanical behavior of the alloy coated with two different coating structures, consisting of (i) chemical Ni (Ni-P) and (ii) Ni-P + DLC, was also evaluated. The goal was the identification of a deposition cycle such as to guarantee the optimization of the mechanical and tribological behavior of the alloy. The Ni-P coating provided good wear resistance but an increase in the coefficient of friction. In contrast, using the DLC top coating resulted in excellent tribological performance in wear resistance and friction coefficient. The samples characterized by the Ni-P + DLC multilayer coating were subsequently subjected to mechanical characterization. The results obtained highlighted problems of adhesion and incipient breaking of the material due to the different mechanical behavior of the coating, considerably reducing the mechanical performance of the alloy coated with Ni-P+DLC multilayer solution compared to the specimens in the un-coated condition.