265 resultados para topologia, superfici, teorema di Seifert van Kampen.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Come si può evincere dal titolo, l'obbiettivo di questo elaborato è quello di studiare ed analizzare le copule, esponendo in un primo momento la loro teoria, e successivamente esaminando una particolare applicazione ai derivati meteorologici, nello specifico alla copertura dell'indice CAT. All'inizio del primo capitolo viene fornita la definizione di copula (nel caso bidimensionale) con le relative proprietà e viene enunciato il teorema di Sklar, spiegando la sua centralità nella teoria. In seguito vengono presentate le due famiglie di copule, ellittiche e Archimedee, spiegando in quale ambito vengono utilizzate per la modellizzazione delle dipendenze tra variabili aleatorie ed elencando gli esempi più importanti di ogni famiglia. Nel secondo capitolo viene analizzata l'applicazione delle copule nel prezzaggio di una copertura dell'indice CAT. Inizialmente viene presentato il funzionamento della copertura, ovvero come si costruisce l'indice e come viene calcolato il risarcimento. Infine si passa al calcolo del prezzo del derivato, mostrando come utilizzando le copule per includere nella modellizzazione le dipendenze tra le varie stazioni meteorologiche permetta di ottenere delle stime migliori rispetto a quelle calcolate considerando le stazioni indipendenti tra loro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questa tesi è studiare alcune proprietà di base delle algebre di Hopf, strutture algebriche emerse intorno agli anni ’50 dalla topologica algebrica e dalla teoria dei gruppi algebrici, e mostrare un collegamento tra esse e le algebre di Lie. Il primo capitolo è un’introduzione basilare al concetto di prodotto tensoriale di spazi vettoriali, che verrà utilizzato nel secondo capitolo per definire le strutture di algebra, co-algebra e bi-algebra. Il terzo capitolo introduce le definizioni e alcune proprietà di base delle algebre di Hopf e di Lie, con particolare attenzione al legame tra le prime e l’algebra universale inviluppante di un’algebra di Lie. Questo legame sarà approfondito nel quarto capitolo, dedicato allo studio di una particolare classe di algebre di Hopf, quelle graduate e connesse, che terminerà con il teorema di Cartier-Quillen-Milnor-Moore, un teorema strutturale che fornisce condizioni sufficienti affinché un’algebra di Hopf sia isomorfa all’algebra universale inviluppante dei suoi elementi primitivi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All'interno della tesi viene analizzato il principio del massimo per l'operatore di Laplace e per operatori lineari ellittici differenziali. Attraverso l'utilizzo delle formule di media si dimostra il principio del massimo forte e debole per l'operatore di Laplace e si analizzano le sue applicazioni, quali la disuguaglianza di Harnack, il teorema di Liouville e il teorema fondamentale dell'algebra. Successivamente si vanno a dimostrare il principio del massimo debole e, tramite il lemma di Hopf, il principio del massimo forte, per operatori lineari ellittici differenziali. Infine si studia il caso dell'unicità delle soluzioni dei problemi di Dirichlet per operatori lineari ellittici differenziali, sfruttando il principio del massimo debole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il moto browniano è un argomento estremamente importante nella teoria della probabilità ed è alla base di molti modelli matematici che studiano fenomeni aleatori, in ambiti come la biologia, l'economia e la fisica. In questa tesi si affronta il problema dell'esistenza del moto browniano con un approccio differente rispetto a quello più tradizionale che utilizza il Teorema di estensione di Kolmogorov e il Teorema di continuità di Kolmogorov-Chentsov. Verranno presentate due costruzioni diverse. Con la prima, detta di Lévy-Ciesielski, si otterrà il moto browniano come limite di una successione di processi stocastici continui definiti ricorsivamente. Con la seconda, il moto browniano verrà costruito tramite la convergenza in legge di passeggiate aleatorie interpolate e riscalate, mediante il cosiddetto principio di invarianza di Donsker. Grazie a quest'ultima costruzione si potrà in particolare definire la misura di Wiener.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Lo scopo della tesi è dimostrare un teorema che offre una condizione necessaria e sufficiente affinché un poliedro con facce identificate risulti una varietà tridimensionale. Nel primo capitolo si descrive una possibile metodologia di studio e presentazione delle superfici al fine di fare un confronto con le 3-varietà. Nel secondo capitolo, prima di studiare il teorema principale, si descrivono nozioni di topologia algebrica utili nella sua dimostrazione: la coomologia e la dualità di Poincaré. Infine il terzo capitolo è dedicato alla descrizione di due esempi di 3-varietà e ad un controesempio al teorema in dimensione 5.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il teorema della funzione implicita, valido nel caso di varietà differenziabili, non risulta vero se si prendono in analisi varietà algebriche affini con la topologia di Zariski. Dopo aver introdotto le nozioni di morfismo piatto e di morfismo non ramificato, si arriva ai morfismi étale, definiti proprio come quei morfismi che sono piatti e non ramificati; nella seconda parte si considerano i morfismi di varietà non singolari dimostrando che la classe dei morfismi étale coincide esattamente con quei morfismi che inducono isomorfismi sugli spazi tangenti. Si approfondisce poi la nozione di morfismo étale da un punto di vista algebrico e infine la nozione di intorno étale di un punto, che si basa su quella di morfismo étale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presentiamo alcune proposte di modifica alle superfici di suddivisione di Catmull-Clark, per garantire la continuità del secondo ordine anche nei vertici straordinari e una buona qualità di forma. La ricerca di questi miglioramenti è motivata dal tentativo di integrazione delle superfici di suddivisione in un sistema di modellazione geometrica in contesto CAD/CAGD, il quale richiede che certi requisiti di regolarità e qualità siano soddisfatti. Illustriamo due approcci differenti per la modifica della superficie limite. Il primo prevede il blending tra la superficie originale e una superficie polinomiale approssimante, definita opportunamente, in modo tale da ottenere la regolarità desiderata. Il secondo metodo consiste nella sostituzione della superficie di Catmull-Clark con un complesso di patch di Gregory bicubici e adeguatamente raccordati. Insieme all’attività di analisi, riformulazione ed estensione di queste proposte, abbiamo realizzato una implementazione in codice C/C++ e OpenGL (con programmi accessori scritti in MATLAB e Mathematica), finalizzata alla sperimentazione e alla verifica delle caratteristiche dei metodi presentati.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questo elaborato vengono studiati gli arrangiamenti di iperpiani prima di tutto dal punto di vista combinatorio e, in seguito, dal punto di vista topologico. Particolare attenzione verrà riposta nello studio della coomologia del complemento di arrangiamenti complessi. Per giungere ad una completa descrizione coomologica si sfrutterà la costruzione e lo studio di particolari algebre esterne basate sulle caratteristiche combinatorie degli arrangiamenti.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dopo aver definito tutte le proprietà, si classificano gli schemi di suddivisione per curve. Si propongono, quindi, degli schemi univariati per la compressione di segnali e degli schemi bivariati per lo scaling e la compressione di immagini digitali.