309 resultados para Semantica operazionale strutturale sintassi


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obiettivo del progetto di tesi è ritrovare un percorso urbano, riguardante un tratto della città di Cesena, che oggi non è più leggibile nella sua originaria identità. La cinta muraria di Cesena è da sempre motivo di vanto della città. Esso è dovuto anche al fatto che gran parte di tale cinta è stato oggetto di restauri puntuali. Vi è un tratto di esse però dove non risulta più immediata la sua l’appartenenza ad un tutto più ampio e finito che è quello dell’intero perimetro fortificato. Il nostro progetto vuole suggerire nuovamente quale fosse il suo andamento, e il suo rapporto con il resto della città quindi proponiamo il restauro e la valorizzazione degli elementi significativi che s’incontrano percorrendo il suddetto tratto di città. Precisamente si tratta dei manufatti della porta d’accesso del torrente Cesuola detta Portaccia e di porta Fiume, due delle antiche porte delle mura cesenati. Si propone per questi un riuso degli ambienti che saranno adibiti a punto informativo, piuttosto che aree espositive, museali. Saranno aperte al pubblico e rese visibili per portare un esempio le antiche cannoniere. Si è progettata anche la sistemazione dell’area esterna direttamente prospiciente gli edifici in questione, al fine di renderli maggiormente visibili e riconoscibili all’interno del panorama cittadino. Questi due edifici vogliono essere importanti poli per i turisti o per chiunque voglia immergersi nella storia della città di Cesena. S’incontra poi in questa passeggiata, un’area archeologica. La si raggiunge partendo per esempio dalla Portaccia e seguendo quello che era il tracciato delle antiche mura. Tale area testimonia l’esistenza di tratti di antiche fortificazioni e ci racconta i caratteri costruttivi delle abitazioni del tempo e dell’impianto urbano, oltre ad aver riportato alla luce antichi manufatti e reperti archeologici importanti. Questo spazio verrà opportunamente valorizzato e reso noto ai visitatori. Si sceglie di non portare alla luce gli elementi trovati nel sottosuolo per non variare le loro condizioni termo-igrometriche, e di suggerire la dimensione degli stessi attraverso la progettazione fedele fuori terra di elementi in alzato cavi contenenti vegetazione. Il visitatore potrà girovagare fra questi nel “giardino archeologico”. Un altro elemento di fondamentale importanza proseguendo nel percorso è la presenza dei suggestivi ruderi della rocca Vecchia, che hanno resistito allo scorrere inesorabile del tempo e che sono ancora in grado di testimoniare di un passato ormai distante e sfocato. Sarà la vegetazione a fare da protagonista in quest’area poiché attraverso la scelta di alcune piante che, con le loro radici sono in grado di aiutare i ruderi a sopravvivere, verrà dato nuova veste a ciò che resta della rocca Vecchia. Contestualmente a ciò, si è deciso di riproporre nella zona retrostante i ruderi, il sistema degli antichi terrazzamenti di cui il colle è stato dotato in passato. Essi sono importanti a livello strutturale per ovviare alle problematiche conseguenti al dilavamento del terreno verso valle, ma non solo. Si vuole sì riproporre questi terrazzamenti come citazione storica, ma essa vuole essere un’emulazione non un’imitazione, pertanto, verranno trattati come una sorta di “giardino botanico”. La discesa del colle verso porta Fiume sarà certamente più piacevole se si potranno ammirare le specie autoctone presenti in questo luogo ben organizzate lungo la passeggiata. L’obiettivo del progetto è rendere palesi le importanti caratteristiche architettoniche che contraddistinguono l’eccezionale valore dei beni oggetto di analisi, migliorando le condizioni di conservazione ed assicurando una fruizione degli ambienti, ove sia possibile, e donando una nuova destinazione d’uso agli stessi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il lavoro della tesi riguarda lo studio del comportamento di solai compositi, realizzati con tre strati di materiale. Questa metodologia costruttiva li fa ricadere nella tipologia strutturale del PANNELLO SANDWICH. Sono state condotte delle prove su campioni di materiali estratti da un provino di solaio, per determinare le caratteristiche meccaniche dei materiali stessi, poi sono state condotte le prove di carico su provini di solai integri, dai quali si sono ottenuti i diagrammi carico-spostamento. Successivamente sono state applicate due teorie sui pannelli sandwich, la teoria di Pantema e la teoria di Allen, allo scopo di vedere come riescano ad interpretare il comportamento sperimentale. Infine sono stati studiati i comportamenti agli SLE in termini di tensioni e frecce, e agli SLU in termini di capacità portante (taglio e momento flettente) secondo quanto dettato dal D.M. 14/01/2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La progettazione sismica negli ultimi anni ha subito una forte trasformazione, infatti con l’introduzione delle nuove normative tecniche si è passati dallo svolgere una verifica delle capacità locali dei singoli elementi ad una progettazione con un approccio di tipo probabilistico, il quale richiede il soddisfacimento di una serie di stati limite ai quali viene attribuita una certa probabilità di superamento. La valutazione dell’affidabilità sismica di una struttura viene condotta di solito attraverso metodologie che prendono il nome di Probabilistic Seismic Design Analysis (PSDA) in accordo con la procedura del Performance Based Earthquake Engineering (PBEE). In questa procedura di tipo probabilistico risulta di notevole importanza la definizione della misura d’intensità sismica, la quale può essere utilizzata sia come predittore della risposta strutturale a fronte di un evento sismico, sia come parametro per definire la pericolosità di un sito. Queste misure d’intensità possono essere definite direttamente dalla registrazione dell’evento sismico, come ad esempio l’accelerazione di picco del terreno, oppure sulla base della risposta, sia lineare che non, della struttura soggetta a tale evento, ovvero quelle che vengono chiamate misure d’intensità spettrali. Come vedremo è preferibile l’utilizzo di misure d’intensità che soddisfino certe proprietà, in modo da far risultare più efficace possibile le risoluzione del problema con l’approccio probabilistico PBEE. Obbiettivo principale di questa dissertazione è quello di valutare alcune di queste proprietà per un gran numero di misure d’intensità sismiche a partire dai risultati di risposta strutturale ottenuti mediante analisi dinamiche non lineari nel tempo, condotte per diverse tipologie di strutture con differenti proprietà meccaniche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il concetto di “sostenibilità” si riferisce allo sviluppo dei sistemi umani attraverso il più piccolo impatto possibile sul sistema ambientale. Le opere che si inseriscono bene nel contesto ambientale circostante e le pratiche che rispettano le risorse in maniera tale da permettere una crescita e uno sviluppo a lungo termine senza impattare sull’ambiente sono indispensabili in una società moderna. I progressi passati, presenti e futuri che hanno reso i conglomerati bituminosi materiali sostenibili dal punto di vista ambientale sono particolarmente importanti data la grande quantità di conglomerato usato annualmente in Europa e negli Stati Uniti. I produttori di bitume e di conglomerato bituminoso stanno sviluppando tecniche innovative per ridurre l’impatto ambientale senza compromettere le prestazioni meccaniche finali. Un conglomerato bituminoso ad “alta lavorabilità” (WMA), pur sviluppando le stesse caratteristiche meccaniche, richiede un temperatura di produzione minore rispetto a quella di un tradizionale conglomerato bituminoso a caldo (HMA). L’abbassamento della temperature di produzione riduce le emissioni nocive. Questo migliora le condizioni dei lavoratori ed è orientato verso uno sviluppo sostenibile. L’obbiettivo principale di questa tesi di laurea è quello di dimostrare il duplice valore sia dal punto di vista dell’eco-compatibilità sia dal punto di vista meccanico di questi conglomerati bituminosi ad “alta lavorabilità”. In particolare in questa tesi di laurea è stato studiato uno SMA ad “alta lavorabilità” (PGGWMA). L’uso di materiali a basso impatto ambientale è la prima fase verso un progetto ecocompatibile ma non può che essere il punto di partenza. L’approccio ecocompatibile deve essere esteso anche ai metodi di progetto e alla caratterizzazione di laboratorio dei materiali perché solo in questo modo è possibile ricavare le massime potenzialità dai materiali usati. Un’appropriata caratterizzazione del conglomerato bituminoso è fondamentale e necessaria per una realistica previsione delle performance di una pavimentazione stradale. La caratterizzazione volumetrica (Mix Design) e meccanica (Deformazioni Permanenti e Comportamento a fatica) di un conglomerato bituminoso è una fase importante. Inoltre, al fine di utilizzare correttamente i materiali, un metodo di progetto avanzato ed efficiente, come quello rappresentato da un approccio Empirico-Meccanicistico (ME), deve essere utilizzato. Una procedura di progetto Empirico-Meccanicistica consiste di un modello strutturale capace di prevedere gli stati di tensione e deformazione all’interno della pavimentazione sotto l’azione del traffico e in funzione delle condizioni atmosferiche e di modelli empirici, calibrati sul comportamento dei materiali, che collegano la risposta strutturale alle performance della pavimentazione. Nel 1996 in California, per poter effettivamente sfruttare i benefici dei continui progressi nel campo delle pavimentazioni stradali, fu iniziato un estensivo progetto di ricerca mirato allo sviluppo dei metodi di progetto Empirico - Meccanicistici per le pavimentazioni stradali. Il risultato finale fu la prima versione del software CalME che fornisce all’utente tre approcci diversi di l’analisi e progetto: un approccio Empirico, uno Empirico - Meccanicistico classico e un approccio Empirico - Meccanicistico Incrementale - Ricorsivo. Questo tesi di laurea si concentra sulla procedura Incrementale - Ricorsiva del software CalME, basata su modelli di danno per quanto riguarda la fatica e l’accumulo di deformazioni di taglio dai quali dipendono rispettivamente la fessurazione superficiale e le deformazioni permanenti nella pavimentazione. Tale procedura funziona per incrementi temporali successivi e, usando i risultati di ogni incremento temporale, ricorsivamente, come input dell’incremento temporale successivo, prevede le condizioni di una pavimentazione stradale per quanto riguarda il modulo complesso dei diversi strati, le fessurazioni superficiali dovute alla fatica, le deformazioni permanenti e la rugosità superficiale. Al fine di verificare le propreità meccaniche del PGGWMA e le reciproche relazioni in termini di danno a fatica e deformazioni permanenti tra strato superficiale e struttura della pavimentazione per fissate condizioni ambientali e di traffico, è stata usata la procedura Incrementale – Ricorsiva del software CalME. Il conglomerato bituminoso studiato (PGGWMA) è stato usato in una pavimentazione stradale come strato superficiale di 60 mm di spessore. Le performance della pavimentazione sono state confrontate a quelle della stessa pavimentazione in cui altri tipi di conglomerato bituminoso sono stati usati come strato superficiale. I tre tipi di conglomerato bituminoso usati come termini di paragone sono stati: un conglomerato bituminoso ad “alta lavorabilità” con granulometria “chiusa” non modificato (DGWMA), un conglomerato bituminoso modificato con polverino di gomma con granulometria “aperta” (GGRAC) e un conglomerato bituminoso non modificato con granulometria “chiusa” (DGAC). Nel Capitolo I è stato introdotto il problema del progetto ecocompatibile delle pavimentazioni stradali. I materiali a basso impatto ambientale come i conglomerati bituminosi ad “alta lavorabilità” e i conglomerati bituminosi modificati con polverino di gomma sono stati descritti in dettaglio. Inoltre è stata discussa l’importanza della caratterizzazione di laboratorio dei materiali e il valore di un metodo razionale di progetto delle pavimentazioni stradali. Nel Capitolo II sono stati descritti i diversi approcci progettuali utilizzabili con il CalME e in particolare è stata spiegata la procedura Incrementale – Ricorsiva. Nel Capitolo III sono state studiate le proprietà volumetriche e meccaniche del PGGWMA. Test di Fatica e di Deformazioni Permanenti, eseguiti rispettivamente con la macchina a fatica per flessione su quattro punti e il Simple Shear Test device (macchina di taglio semplice), sono stati effettuati su provini di conglomerato bituminoso e i risultati dei test sono stati riassunti. Attraverso questi dati di laboratorio, i parametri dei modelli della Master Curve, del danno a fatica e dell’accumulo di deformazioni di taglio usati nella procedura Incrementale – Ricorsiva del CalME sono stati valutati. Infine, nel Capitolo IV, sono stati presentati i risultati delle simulazioni di pavimentazioni stradali con diversi strati superficiali. Per ogni pavimentazione sono stati analizzati la fessurazione superficiale complessiva, le deformazioni permanenti complessive, il danno a fatica e la profondità delle deformazioni in ognuno degli stati legati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi individua alcune strategie di rigenerazione urbana e di riqualificazione edilizia, al fine di ottenere una serie di linee guida per l’intervento sul patrimonio di edilizia abitativa situata nelle periferie urbane. Tali principi sono stati poi applicati ad un edificio ACER collocato nella prima periferia di Forlì, per sperimentare l’efficacia delle strategie individuate. Dalla ricerca svolta sulle strategie di intervento volte alla riqualificazione sociale delle periferie, in particolare la teoria del “Defencible space” di Jacobs, si evidenzia l’importanza di accentuare nei residenti il sentimento di territorialità, ovvero la consapevolezza di far parte di una comunità specifica insediata in un particolare spazio, alimentata attraverso la frequentazione e l’appropriazione percettivo-funzionale degli spazi pubblici. Si è deciso quindi di allargare il campo di intervento alla rigenerazione dell’interno comparto, attraverso la riorganizzazione degli spazi verdi e la dotazione di attrezzature sportive e ricreative, in modo da offrire spazi specifici per le diverse utenze (anziani, giovani, bambini) e la definizione di un programma funzionale di servizi ricreativi e spazi destinati a piccolo commercio per integrare le dotazioni carenti dell’area. Dall’analisi approfondita dell’edificio sono emerse le criticità maggiori su cui intervenire: - l’intersezione dei percorsi di accesso all’edificio - la struttura portante rigida, non modificabile - la scarsa varietà tipologica degli alloggi - l’elevato fabbisogno energetico. La riqualificazione dell’edificio ha toccato quindi differenti campi: tecnologico, funzionale, energetico e sociale; il progetto è stato strutturato come una serie di fasi successive di intervento, eventualmente realizzabili in tempi diversi, in modo da consentire il raggiungimento di diversi obiettivi di qualità, in funzione della priorità data alle diverse esigenze. Secondo quest’ottica, il primo grado di intervento, la fase 1 - riqualificazione energetica, si limita all’adeguamento dello stato attuale alle prestazioni energetiche richieste dalla normativa vigente, in assenza di adeguamenti tipologici e spaziali. La fase 2 propone la sostituzione degli impianti di riscaldamento a caldaie autonome presenti attualmente con un impianto centralizzato con pompa di calore, un intervento invasivo che rende necessaria la realizzazione di un “involucro polifunzionale” che avvolge completamente l’edificio. Questo intervento nasce da tre necessità fondamentali : - architettonica: poter ampliare verso l’esterno le superfici degli alloggi, così da intervenire sulle unità abitative rendendole più rispondenti alle necessità odierne; - statica: non dover gravare in ciò sull’edificio esistente apportando ulteriori carichi, difficilmente sopportabili dalla struttura esistente, assicurando il rispetto della normativa antisismica in vigore; - impiantistica/tecnologica: alloggiare i condotti del nuovo impianto centralizzato per il riscaldamento, raffrescamento e acs; La fase 3 è invece incentrata sull’ampliamento dell’offerta abitativa, in modo da rispondere anche a necessità legate ad utenze speciali, come utenti disabili o anziani. L’addizione di nuovi volumi si sviluppa in tre direzioni: - un volume parassita, che aderisce all’edificio nel fronte sud/est, indipendente dal punto di vista strutturale, ruotato per sfruttare al meglio l’orientamento ottimale. - un volume satellite, indipendente, connesso all’edificio esistente tramite un elemento di raccordo, e nel quale sono collocati alcuni alloggi speciali. - un’addizione in copertura, che non appoggia direttamente sul solaio di copertura esistente, ma grava sull’elemento di chiusura del’involucro realizzato nella fase 2 Completano il progetto le addizioni volumetriche a piano terra, destinate a servizi quali un centro diurno, un micronido e un bar, i quali costituiscono la traduzione alla scala dell’edificio delle strategie applicate nel progetto di comparto. Questi interventi hanno consentito di trasformare un edificio costruito negli anni ’80 in un complesso residenziale moderno, dotato spazi accessori di grande qualità, tecnologie moderne che ne garantiscono il comfort abitativo, servizi alla persona disponibili in prossimità dell’edificio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il progetto è incentrato sulla riqualificazione dell’area occupata dai vecchi stabilimenti dell’Eridania a Forlì risalenti al 1900, ora di proprietà della Cooperativa Muratori di Verucchio. L’area è situata in una zona a Nord del centro storico, adiacente alla linea ferroviaria. Attualmente verte in stato di forte abbandono dal 1973, anno della chiusura dello stabilimento: è la più vasta area dismessa in prossimità del centro storico, una ferita aperta nel cuore della città. Le dimensioni e la vicinanza al centro cittadino costituiscono il maggiore potenziale dell’area che si presta per questo all’introduzione di funzioni di pubblico interesse, spazi per la cultura e lo svago, edifici residenziali e commerciali; inoltre, essendo caratterizzata da una prevalenza di spazi verdi, nasce spontanea l’ipotesi di un nuovo grande parco urbano al servizio della comunità. Oltre al valore dell’area è da sottolineare il pregio architettonico di alcuni degli edifici che possiamo considerare come grandiosi esempi di archeologia industriale. Gli edifici, attualmente, versano in un notevole stato di degrado dovuto all’abbandono dello stabilimento e al grave incendio che nel 1989 ha distrutto i capannoni di deposito, risparmiando però il corpo principale dell’intervento. Nonostante ciò, gli edifici hanno conservato pressoché intatta la loro struttura e, di conseguenza, l’immagine originaria nel suo complesso. È quindi possibile ipotizzarne il mantenimento, una volta effettuati i necessari interventi di consolidamento strutturale e ristrutturazione architettonica. Il progetto di recupero dell’area nasce quindi da un’esigenza concreta e fortemente sentita dalla cittadinanza. Si deve inoltre considerare che, senza un intervento tempestivo, si va incontro all’aggravamento dello stato delle strutture superstiti, fino ad un possibile collasso, rischiando così di perdere definitivamente un prezioso bene del patrimonio architettonico della città. Il dibattito sull’ex Eridania e le sue possibilità di trasformazione si è riacceso negli ultimi anni, soprattutto in seguito all’incendio dell’89. In particolare, il PRG di Forlì del 2003, successivamente adeguato alla legge regionale 20/2000 nel 2007, definisce un nuovo piano di riqualificazione per le aree dismesse e le aree ferroviarie, con nuovi contenuti e procedure d’intervento. Nel 2008 la Cooperativa Muratori di Verucchio, proprietaria dell’area e degli stabilimenti, ha proposto un accordo di programma che prevedeva per il corpo centrale dello zuccherificio la destinazione a caserma delle forze dell’ordine, e per gli spazi circostanti la costruzione di case popolari, di un centro sportivo, di residenze private, edifici per uffici e negozi, oltre al mantenimento di ampie aree verdi. Il progetto non è stato finora realizzato a causa degli alti costi d’intervento per la messa in sicurezza degli edifici preesistenti. Nello steso anno l’associazione Italia Nostra ha proposto l’organizzazione di un concorso di idee per il recupero dell’area, ipotizzando per lo stabilimento principale la trasformazione in un ampio spazio coperto, aperto a diverse e numerose possibilità di destinazione rivolte alla collettività. Gli alti costi di recupero, insieme all’immobilismo amministrativo e ai limiti legati a una burocrazia complessa, e spesso inefficace, hanno finora invalidato qualsiasi tipo d’intervento e, ad oggi, la questione del riutilizzo dello zuccherificio rimane una domanda aperta ancora senza risposta. E’ quindi importante continuare ad interrogarsi sul futuro dell’area progredendo, se non con fatti concreti, con nuove idee e proposte, in attesa che si creino le condizioni necessarie ad intervenire e ridare alla città una parte di sé, arricchita di nuovo valore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il progetto è incentrato sulla riqualificazione dell’area occupata dai vecchi stabilimenti dell’Eridania a Forlì risalenti al 1900, ora di proprietà della Cooperativa Muratori di Verucchio. L’area è situata in una zona a Nord del centro storico, adiacente alla linea ferroviaria. Attualmente verte in stato di forte abbandono dal 1973, anno della chiusura dello stabilimento: è la più vasta area dismessa in prossimità del centro storico, una ferita aperta nel cuore della città. Le dimensioni e la vicinanza al centro cittadino costituiscono il maggiore potenziale dell’area che si presta per questo all’introduzione di funzioni di pubblico interesse, spazi per la cultura e lo svago, edifici residenziali e commerciali; inoltre, essendo caratterizzata da una prevalenza di spazi verdi, nasce spontanea l’ipotesi di un nuovo grande parco urbano al servizio della comunità. Oltre al valore dell’area è da sottolineare il pregio architettonico di alcuni degli edifici che possiamo considerare come grandiosi esempi di archeologia industriale. Gli edifici, attualmente, versano in un notevole stato di degrado dovuto all’abbandono dello stabilimento e al grave incendio che nel 1989 ha distrutto i capannoni di deposito, risparmiando però il corpo principale dell’intervento. Nonostante ciò, gli edifici hanno conservato pressoché intatta la loro struttura e, di conseguenza, l’immagine originaria nel suo complesso. È quindi possibile ipotizzarne il mantenimento, una volta effettuati i necessari interventi di consolidamento strutturale e ristrutturazione architettonica. Il progetto di recupero dell’area nasce quindi da un’esigenza concreta e fortemente sentita dalla cittadinanza. Si deve inoltre considerare che, senza un intervento tempestivo, si va incontro all’aggravamento dello stato delle strutture superstiti, fino ad un possibile collasso, rischiando così di perdere definitivamente un prezioso bene del patrimonio architettonico della città. Il dibattito sull’ex Eridania e le sue possibilità di trasformazione si è riacceso negli ultimi anni, soprattutto in seguito all’incendio dell’89. In particolare, il PRG di Forlì del 2003, successivamente adeguato alla legge regionale 20/2000 nel 2007, definisce un nuovo piano di riqualificazione per le aree dismesse e le aree ferroviarie, con nuovi contenuti e procedure d’intervento. Nel 2008 la Cooperativa Muratori di Verucchio, proprietaria dell’area e degli stabilimenti, ha proposto un accordo di programma che prevedeva per il corpo centrale dello zuccherificio la destinazione a caserma delle forze dell’ordine, e per gli spazi circostanti la costruzione di case popolari, di un centro sportivo, di residenze private, edifici per uffici e negozi, oltre al mantenimento di ampie aree verdi. Il progetto non è stato finora realizzato a causa degli alti costi d’intervento per la messa in sicurezza degli edifici preesistenti. Nello steso anno l’associazione Italia Nostra ha proposto l’organizzazione di un concorso di idee per il recupero dell’area, ipotizzando per lo stabilimento principale la trasformazione in un ampio spazio coperto, aperto a diverse e numerose possibilità di destinazione rivolte alla collettività. Gli alti costi di recupero, insieme all’immobilismo amministrativo e ai limiti legati a una burocrazia complessa, e spesso inefficace, hanno finora invalidato qualsiasi tipo d’intervento e, ad oggi, la questione del riutilizzo dello zuccherificio rimane una domanda aperta ancora senza risposta. E’ quindi importante continuare ad interrogarsi sul futuro dell’area progredendo, se non con fatti concreti, con nuove idee e proposte, in attesa che si creino le condizioni necessarie ad intervenire e ridare alla città una parte di sé, arricchita di nuovo valore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi di laurea che verrà qui di seguito presentata, ha l’obiettivo di far vedere come interventi di consolidamento attuati al fine di mettere in sicurezza una struttura esistente possano essere utilizzati come presidi per il riuso, occasioni in cui far fondere in progetto architettonico di recupero di un manufatto con interventi tecnologici-strutturali atti a salvaguardarlo. Si cercherà perciò di far andare di pari passo questi due elementi evitando che uno di essi prevalga sull’altro e considerandoli in modo unitario e non come due progetti separati. L’edificio preso in esame è il Castello di Zocco. Risalente al XII secolo, è situato su una piccola collina lungo le sponde del Lago Trasimeno in Provincia di Perugia. Esso è costituito da una cinta muraria al cui interno sono presenti pochi edifici in pessimo stato di conservazione, è attualmente in disuso e presenta notevoli dissesti strutturali. Il castello è stato studiato da tutti i punti di vista al fine di formulare un’ipotesi di riutilizzo. Ne è stata inizialmente analizzata la posizione geografica-territoriale elemento significativo sia per la sua storia che per la sua organizzazione insediativa. Successivamente, dallo studio storico, si è intrapresa un’analisi dei sistemi costruttivi e della consistenza indispensabili per una migliore comprensione del complesso. Uno studio approfondito di tutto ciò, unito ad un’analisi dettagliata dei dissesti statici e dei meccanismi di danno e collasso, è stato il punto di partenza per l’elaborazione di un progetto architettonico che andasse di pari passo con il consolidamento strutturale compatibile con l’edificio stesso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well-known that crystalline materials obtain their fundamental physical properties from the molecular arrangement within the solid, and altering the placement and or interactions between these molecules can impact the properties of the particular solid. Solid state chemistry looks at an attempt to alter the chemical and physical solid-state properties of APIs through many different strategies as the formation of salts, polymorphs, hydrates, solvates, and cocrystals. The final aim of this work is to study the chemical and physical propriety of new crystal structures. The work consists of three parts. The first is the cocrystallization of α,ω-alkanedicarboxylics acids with pirimidine. Single-crystal X-ray diffraction analysis of this adduct have been carried out at RT, 150 and 200 K. The cocrystals show an alteration of their melting point similar to pure acids. The two significant deviations are for the cocrystals with succinico and glutarico acids. The second object of work is the structure determination of β polymorph undecandioic acids. In literature is known the other polymorph α. We observed that the thermodynamic relation for this dimorphics system is monotropic. In the third part we synthesized and analyzed the stability of four new salts of serine and oxalic acid. This project highlights the advantage of the solid state synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi riguarda lo studio della reazione fotoindotta del 9-10 dinitroantracene (DNO2A) ad antrachinone (AQ) con l’ausilio di una tecnica spettroscopica senza precedenti nel campo. Lo studio tramite spettroscopia Raman dei fononi reticolari (variazioni fisiche) e dei modi intramolecolari (variazioni chimiche) di reagente e prodotto, simultaneamente al manifestarsi della reazione, è infatti un metodo potente, diretto, in situ e non distruttivo per studiare una reazione solido-solido che coinvolge spettacolari movimenti micro-meccanici nel cristallo singolo del reagente durante l’irraggiamento. L’ulteriore vantaggio della confocalità amplia ulteriormente il campo di applicazione di questa tecnica, permettendo un’analisi su scala spaziale inferiore al micrometro, con la possibilità di mappature a livello molecolare da confrontare con l’immagine microscopica del campione[9]. Abbiamo inoltre visto che ampie ricostruzioni strutturali avvengono nel corso della reazione. Le conseguenze, a livello microscopico, si riflettono sulla modificazione strutturale della cella elementare; quelle a livello macroscopico mostrano una sorprendente relazione fotone incidente/energia meccanica prodotta. Infine lo studio di questa reazione in celle ad alta pressione ha ampliato il corpo di conoscenze della reazione oggetto della tesi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con il termine Smart Grid si intende una rete urbana capillare che trasporta energia, informazione e controllo, composta da dispositivi e sistemi altamente distribuiti e cooperanti. Essa deve essere in grado di orchestrare in modo intelligente le azioni di tutti gli utenti e dispositivi connessi al fine di distribuire energia in modo sicuro, efficiente e sostenibile. Questo connubio fra ICT ed Energia viene comunemente identificato anche con il termine Smart Metering, o Internet of Energy. La crescente domanda di energia e l’assoluta necessità di ridurre gli impatti ambientali (pacchetto clima energia 20-20-20 [9]), ha creato una convergenza di interessi scientifici, industriali e politici sul tema di come le tecnologie ICT possano abilitare un processo di trasformazione strutturale di ogni fase del ciclo energetico: dalla generazione fino all’accumulo, al trasporto, alla distribuzione, alla vendita e, non ultimo, il consumo intelligente di energia. Tutti i dispositivi connessi, diventeranno parte attiva di un ciclo di controllo esteso alle grandi centrali di generazione così come ai comportamenti dei singoli utenti, agli elettrodomestici di casa, alle auto elettriche e ai sistemi di micro-generazione diffusa. La Smart Grid dovrà quindi appoggiarsi su una rete capillare di comunicazione che fornisca non solo la connettività fra i dispositivi, ma anche l’abilitazione di nuovi servizi energetici a valore aggiunto. In questo scenario, la strategia di comunicazione sviluppata per lo Smart Metering dell’energia elettrica, può essere estesa anche a tutte le applicazioni di telerilevamento e gestione, come nuovi contatori dell’acqua e del gas intelligenti, gestione dei rifiuti, monitoraggio dell’inquinamento dell’aria, monitoraggio del rumore acustico stradale, controllo continuo del sistema di illuminazione pubblico, sistemi di gestione dei parcheggi cittadini, monitoraggio del servizio di noleggio delle biciclette, ecc. Tutto ciò si prevede possa contribuire alla progettazione di un unico sistema connesso, dove differenti dispositivi eterogenei saranno collegati per mettere a disposizione un’adeguata struttura a basso costo e bassa potenza, chiamata Metropolitan Mesh Machine Network (M3N) o ancora meglio Smart City. Le Smart Cities dovranno a loro volta diventare reti attive, in grado di reagire agli eventi esterni e perseguire obiettivi di efficienza in modo autonomo e in tempo reale. Anche per esse è richiesta l’introduzione di smart meter, connessi ad una rete di comunicazione broadband e in grado di gestire un flusso di monitoraggio e controllo bi-direzionale esteso a tutti gli apparati connessi alla rete elettrica (ma anche del gas, acqua, ecc). La M3N, è un’estensione delle wireless mesh network (WMN). Esse rappresentano una tecnologia fortemente attesa che giocherà un ruolo molto importante nelle futura generazione di reti wireless. Una WMN è una rete di telecomunicazione basata su nodi radio in cui ci sono minimo due percorsi che mettono in comunicazione due nodi. E’ un tipo di rete robusta e che offre ridondanza. Quando un nodo non è più attivo, tutti i rimanenti possono ancora comunicare tra di loro, direttamente o passando da uno o più nodi intermedi. Le WMN rappresentano una tipologia di rete fondamentale nel continuo sviluppo delle reti radio che denota la divergenza dalle tradizionali reti wireless basate su un sistema centralizzato come le reti cellulari e le WLAN (Wireless Local Area Network). Analogamente a quanto successo per le reti di telecomunicazione fisse, in cui si è passati, dalla fine degli anni ’60 ai primi anni ’70, ad introdurre schemi di rete distribuite che si sono evolute e man mano preso campo come Internet, le M3N promettono di essere il futuro delle reti wireless “smart”. Il primo vantaggio che una WMN presenta è inerente alla tolleranza alla caduta di nodi della rete stessa. Diversamente da quanto accade per una rete cellulare, in cui la caduta di una Base Station significa la perdita di servizio per una vasta area geografica, le WMN sono provviste di un’alta tolleranza alle cadute, anche quando i nodi a cadere sono più di uno. L'obbiettivo di questa tesi è quello di valutare le prestazioni, in termini di connettività e throughput, di una M3N al variare di alcuni parametri, quali l’architettura di rete, le tecnologie utilizzabili (quindi al variare della potenza, frequenza, Building Penetration Loss…ecc) e per diverse condizioni di connettività (cioè per diversi casi di propagazione e densità abitativa). Attraverso l’uso di Matlab, è stato quindi progettato e sviluppato un simulatore, che riproduce le caratteristiche di una generica M3N e funge da strumento di valutazione delle performance della stessa. Il lavoro è stato svolto presso i laboratori del DEIS di Villa Grifone in collaborazione con la FUB (Fondazione Ugo Bordoni).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La necessità di conservazione e recupero di murature, di qualsiasi interesse storico/architettonico, ha evidenziato la necessità di conoscere il più dettagliatamente possibile le caratteristiche strutturali delle opere interessate: un intervento risulterà tanto più efficace e adatto agli scopi prefissi quanto maggiore sarà la conoscenza dell’opera, della sua evoluzione, dei materiali utilizzati per la realizzazione, della tecnica costruttiva e della struttura portante. Spesso è necessario eseguire interventi di adeguamento sismico di comuni edifici su cui poter intervenire più o meno indiscriminatamente, mentre, per opere di interesse storico è necessario ridurre al minimo l’invasività degli interventi: in tutti e due i casi, una buona riuscita dell’intervento dipende dalla conoscenza dell’organismo strutturale sul quale si deve operare. Come spesso accade, anche per opere di recente costruzione, risulta difficile poter recuperare i dati progettuali (disegni e calcoli) e spesso le tecniche e le tipologie utilizzate per le costruzioni si differenziavano da zona a zona, così come diversi erano i materiali da costruzione; risulta quindi evidente che per progettare una serie di interventi di recupero è necessario poter ottenere il maggior numero di informazioni al riguardo. Diverse sono le esperienze maturate in questo campo in tutta Europa e queste hanno mostrato come non è sufficiente intervenire con tecniche innovative per adeguare agli standard attuali di sicurezza opere del passato: infatti, in molti casi, l’applicazione sbagliata di queste tecniche o gli interventi progettati in modo non adeguato non hanno svolto il loro compito e in alcuni casi hanno peggiorato la situazione esistente. Dalle esperienze maturate è stato possibile osservare che anche le migliore tecniche di recupero non possono risultare efficaci senza un’adeguata conoscenza dello stato di degrado degli edifici, del loro assetto strutturale e delle possibili carenze. La diagnostica strutturale si vuole inserire proprio in questo livello potendo fornire ad un progettista tutte le informazioni necessarie per effettuare al meglio ed in maniera efficace gli interventi di recupero e restauro necessari. Oltre questi aspetti, le analisi diagnostiche possono essere utilizzate anche per verificare l’efficacia degli interventi effettuati. Diversi sono gli aspetti che si possono analizzare in un’indagine di diagnostica ed in base alle esigenze e alle necessità del rilievo da effettuare sono varie le tecniche a disposizione, ognuna con le sue peculiarità e potenzialità. Nella realizzazione di questa tesi sono state affrontate diverse problematiche che hanno previsto sia l’analisi di situazioni reali in cantiere, sia lo studio in laboratorio. La prima parte del presente elaborato prevede lo studio delle attività svolte a Palazzo Malvezzi, attuale sede della Provincia di Bologna. L’edificio, di interesse storico, ha subito diverse trasformazioni durate la sua vita ed in alcuni casi, queste, eseguite con tecnologie e materiali inadatti, hanno provocato variazioni nell’assetto statico della struttura; inoltre, il palazzo, è soggetto a movimenti a livello di fondazione in quanto è presente una faglia di subsidenza che attraversa l’edificio. Tutte queste problematiche hanno creato movimenti differenziali alla struttura in elevazione che si sono evidenziati con crepe distribuite in tutto l’edificio. Il primo aspetto analizzato (capitoli 4 e 5) è lo studio della profondità delle fessure presenti nel solaio della sala Rossa, sede dei comunicati stampa e delle conferenze della Provincia. Senza dubbio antiestetiche, le crepe presenti in una struttura, se sottovalutate, possono compromettere notevolmente le funzioni statiche dell’elemento in cui si sviluppano: la funzione di protezione fornita dal solaio o da qualsiasi altro elemento strutturale alle armature in questo immerse, viene meno, offrendo vie preferenziali a possibili situazioni di degrado, specialmente se in condizioni ambientali aggressive. E' facile intuire, quindi, che un aspetto all’apparenza banale come quello delle fessure non può essere sottovalutato. L’analisi è stata condotta utilizzando prove soniche ed impact-echo, tecniche che sfruttano lo stresso principio, la propagazione delle onde elastiche nel mezzo, ma che si differenziano per procedure di prova e frequenze generate nel test. Nel primo caso, la presenza del martello strumentato consente di valutare anche la velocità di propagazione delle onde elastiche, fenomeno utilizzato per ottenere indicazioni sulla compattezza del mezzo, mentre nel secondo non è possibile ricavare queste informazioni in quanto la tecnica si basa solamente sullo studio in frequenza del segnale. L’utilizzo dell’impact-echo è stato necessario in quanto la ristilatura effettuata sulle fessure scelte per l’analisi, non ha permesso di ottenere risultati utili tramite prove soniche ; infatti, le frequenze generate risultano troppo basse per poter apprezzare queste piccole discontinuità materiali. La fase di studio successiva ha previsto l’analisi della conformazione dei solai. Nel capitolo 6, tale studio, viene condotto sul solaio della sala Rossa con lo scopo di individuarne la conformazione e la presenza di eventuali elementi di rinforzo inseriti nelle ristrutturazioni avvenute nel corso della vita del palazzo: precedenti indagini eseguite con endoscopio, infatti, hanno mostrato una camera d’aria ed elementi metallici posizionati al di sotto della volta a padiglione costituente il solaio stesso. Le indagini svolte in questa tesi, hanno previsto l’utilizzo della strumentazione radar GPR: con questa tecnica, basata sulla propagazione delle onde elettromagnetiche all’interno di un mezzo, è possibile variare rapidamente la profondità d’ispezione ed il dettaglio ottenibile nelle analisi cambiando le antenne che trasmettono e ricevono il segnale, caratteristiche fondamentali in questo tipo di studio. I risultati ottenuti hanno confermato quanto emerso nelle precedenti indagini mostrando anche altri dettagli descritti nel capitolo. Altro solaio oggetto d’indagine è quello della sala dell’Ovale (capitoli 7 e 8): costruito per dividere l’antica sala da ballo in due volumi, tale elemento è provvisto al suo centro di un caratteristico foro ovale, da cui ne deriva il nome. La forma del solaio lascia supporre la presenza di una particolare struttura di sostegno che le precedenti analisi condotte tramite endoscopio, non sono riuscite a cogliere pienamente. Anche in questo caso le indagini sono state eseguite tramite tecnica radar GPR, ma a differenza dei dati raccolti nella sala Rossa, in questo caso è stato possibile creare un modello tridimensionale del mezzo investigato; inoltre, lo studio è stato ripetuto utilizzando un’antenna ad elevata risoluzione che ha consentito di individuare dettagli in precedenza non visibili. Un ulteriore studio condotto a palazzo Malvezzi riguarda l’analisi della risalita capillare all’interno degli elementi strutturali presenti nel piano interrato (capitolo 9): questo fenomeno, presente nella maggior parte delle opere civili, e causa di degrado delle stesse nelle zone colpite, viene indagato utilizzando il radar GPR. In questo caso, oltre che individuare i livelli di risalita osservabili nelle sezioni radar, viene eseguita anche un’analisi sulle velocità di propagazione del segnale e sulle caratteristiche dielettriche del mezzo, variabili in base al contenuto d’acqua. Lo scopo è quello di individuare i livelli massimi di risalita per poterli confrontare con successive analisi. Nella fase successiva di questo elaborato vengono presentate le analisi svolte in laboratorio. Nella prima parte, capitolo 10, viene ancora esaminato il fenomeno della risalita capillare: volendo studiare in dettaglio questo problema, sono stati realizzati dei muretti in laterizio (a 2 o 3 teste) e per ognuno di essi sono state simulate diverse condizioni di risalita capillare con varie tipologie di sale disciolto in acqua (cloruro di sodio e solfato di sodio). Lo scopo è di valutare i livelli di risalita osservabili per diverse tipologie di sale e per diverse concentrazioni dello stesso. Ancora una volta è stata utilizzata la tecnica radar GPR che permette non solo di valutare tali livelli, ma anche la distribuzione dell’umidità all’interno dei provini, riuscendo a distinguere tra zone completamente sature e zone parzialmente umide. Nello studio è stata valutata anche l’influenza delle concentrazioni saline sulla propagazione del segnale elettromagnetico. Un difetto delle tecniche di diagnostica è quello di essere strumenti qualitativi, ma non quantitativi: nel capitolo 11 viene affrontato questo problema cercando di valutare la precisione dei risultati ottenuti da indagini condotte con strumentazione radar GPR. Studiando gli stessi provini analizzati nel capitolo precedente, la tecnica radar è stata utilizzata per individuare e posizionare i difetti (muretti a 3 teste) e le pietre (muretti a 2 teste) inserite in questi elementi: i risultati ottenuti nella prova sono stati confrontati, infine, con la reale geometria. Nell’ultima parte (capitolo 12), viene esaminato il problema dell’individuazione dei vuoti all’interno di laterizi: per questo scopo sono state create artificialmente delle cavità di diversa forma e a diverse profondità all’interno di laterizi pieni che, dopo un trattamento in cella climatica per aumentarne la temperatura, sono stati sottoposti a riprese termografiche nella fase di raffreddamento. Lo scopo di queste prove è quello di valutare quale sia la massima differenza di temperatura superficiale causata dai diversi difetti e per quale intervallo di temperature questa si verifica.