365 resultados para Prova sperimentale, Struttura prefabbricata, Nodo trave-pilastro, Cemento armato


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel mondo reale il comportamento umano si rivela essere fallace e distorto, sia a livello individuale che ambientale. L'organizzazione a sua volta non è esente da tali limiti; composta da esseri umani, interagisce con l'ambiente in modo fortemente soggettivo, basandosi sull'intuizione, su informazioni di breve periodo e senza riuscire a comprenderlo pienamente. Il presente lavoro di tesi si occupa di esplorare un ambiente di mercato, in presenza di organizzazioni caratterizzate da un processo decisionale fortemente soggettivo. Tramite alcuni esperimenti su un modello di simulazione, saranno studiate le interazioni delle organizzazioni con l'ambiente. L'obiettivo è quello di ottenere una migliore comprensione del comportamento delle organizzazioni nella dinamica competitiva, soprattutto in relazione a ciò che può garantire un vantaggio competitivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le prove non distruttive che sono state studiate in questa tesi sono il monitoraggio termografico, le prove soniche, la tecnica tomografica sonica e l’indagine tramite georadar. Ogni capitolo di applicazione in sito o in laboratorio è sempre preceduto da un capitolo nel quale sono spiegati i principi fondamentali della tecnica applicata. I primi cinque capitoli riguardano un problema molto diffuso nelle murature, cioè la risalita capillare di umidità o di soluzione salina all’interno delle stesse. Spiegati i principi alla base della risalita capillare in un mezzo poroso e della tecnica termografica, sono state illustrate le tre prove svolte in laboratorio: una prova di risalita (di umidità e di salamoia) su laterizi, una prova di risalita di salamoia su tripletta muraria monitorata da sensori e una prova di risalita di umidità su muretto fessurato monitorata tramite termografia ad infrarossi. Nei capitoli 6 e 7 sono stati illustrati i principi fondamentali delle prove soniche ed è stata presentata un’analisi approfondita di diverse aree del Duomo di Modena in particolare due pareti esterne, un pilastro di muratura e una colonna di pietra. Nelle stesse posizioni sono state effettuate anche prove tramite georadar (Capitoli 11 e 12) per trovare analogie con le prove soniche o aggiungere informazioni che non erano state colte dalle prove soniche. Nei capitoli 9 e 10 sono stati spiegati i principi della tomografia sonica (tecnica di inversione dei tempi di volo e tecnica di inversione delle ampiezze dei segnali), sono stati illustrati i procedimenti di elaborazione delle mappe di velocità e sono state riportate e commentate le mappe ottenute relativamente ad un pilastro di muratura del Duomo di Modena (sezioni a due quote diverse) e ad un pilastro interno di muratura della torre Ghirlandina di Modena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Per natura, i dispositivi di conversione di energia da onda (WECs) vengono collocati in aree caratterizzate da onde ad elevato potenziale e in queste condizioni i carichi che agiscono su tali dispositivi sono, sfortunatamente, molto alti e, allo stesso tempo, molto difficili da valutare a priori. Allo stato attuale, nessuna delle tecnologie proposte ha raggiunto uno stadio di sviluppo tale da consentire la produzione dei WECs a scala reale e, quindi, il lancio nel mercato principalmente perchè nessuna di esse può contare su un numero suciente di dati operativi da permettere un'analisi sistematica delle condizioni di lavoro. L'applicazione dei modelli disponibili sembra essere accurata per la maggior parte dei WECs in condizioni operative, ma non abbastanza per prevedere le forze agenti e il loro comportamento quando sono esposti all'azione di onde importanti. Sebbene vi è una generale necessità di indagine su diversi aspetti dei WECs, sembra che il punto critico sia lo sviluppo di un adeguato sistema di ormeggio il cui costo può incidere no al 200

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel presente elaborato viene riassunta in 4 brevi capitoli la mia attività di tesi, svolta nell’ambito del progetto Formula SAE® dell’Università di Bologna nell’anno 2010. Il progetto ha consistito nella realizzazione di una vettura monoposto, con l’obiettivo di far competere la stessa negli eventi previsti dalla SAE® (Society of Automotive Engineer), insieme alle vetture progettate e costruite da altri atenei di tutto il mondo. In tali eventi, una serie di giudici del settore auto-motive valuta la bontà del progetto, ovvero della vettura, che sarà sottoposta ad una serie di prove statiche e dinamiche. Nella seguente trattazione si narra quindi il percorso progettuale e di realizzazione del telaio della vettura, ovvero della sua struttura portante principale. Il progetto infatti, nell’ambito del team UniBo Motorsport, mi ha visto impegnato come “Responsabile Telaio” oltre che come “Responsabile in Pista” durante le prove su strada della vettura, svolte a valle della realizzazione. L’obbiettivo principale di un telaio di vettura da corsa è quello di realizzare una struttura che colleghi rigidamente tra loro i gruppi sospensivi anteriore e posteriore e che preveda anche la possibilità di ancorare tutti i componenti dei sistemi ausiliari di cui la vettura deve essere equipaggiata. Esistono varie tipologie di telai per autovettura ma quelle più adatte ad equipaggiare una vettura da competizione di tipo Formula, sono sicuramente il traliccio in tubi (“space frame”) e la monoscocca in fibra di carbonio. Il primo è sicuramente quello più diffuso nell’ambito della Formula Student grazie alla sua maggior semplicità progettuale e realizzativa ed ai minor investimenti economici che richiede. I parametri fondamentali che caratterizzano un telaio vettura da competizione sono sicuramente la massa e la rigidezza. La massa dello chassis deve essere ovviamente il più bassa possibile in quanto quest, costituisce generalmente il terzo contributo più importante dopo pilota e motore alla massa complessiva del veicolo. Quest’ultimo deve essere il più leggero possibile per avere un guidabilità ed una performance migliori nelle prove dinamiche in cui dovrà impegnarsi. Per quanto riguarda la rigidezza di un telaio, essa può essere distinta in rigidezza flessionale e rigidezza torsionale: di fatto però, solo la rigidezza torsionale va ad influire sui carichi che si trasferiscono agli pneumatici della vettura, pertanto quando si parla di rigidezza di un telaio, ci si riferisce alla sua capacità di sopportare carichi di tipo torsionale. Stabilire a priori un valore adeguato per la rigidezza torsionale di un telaio è impossibile. Tale valore dipende infatti dal tipo di vettura e dal suo impiego. In una vettura di tipo Formula quale quella oggetto del progetto, la rigidezza torsionale del telaio deve essere tale da garantire un corretto lavoro delle sospensioni: gli unici cedimenti elastici causati dalle sollecitazioni dinamiche della vettura devono essere quelli dovuti agli elementi sospensivi (ammortizzatori). In base a questo, come indicazione di massima, si può dire che un valore di rigidezza adeguato per un telaio deve essere un multiplo della rigidezza totale a rollio delle sospensioni. Essendo questo per l’Università di Bologna il primo progetto nell’ambito della Formula SAE® e non avendo quindi a disposizione nessun feed-back da studi o vetture di anni precedenti, per collocare in modo adeguato il pilota all’interno della vettura, in ottemperanza anche con i requisiti di sicurezza dettati dal regolamento, si è deciso insieme all’esperto di ergonomia del team di realizzare una maquette fisica in scala reale dell’abitacolo. Questo ha portato all’individuazione della corretta posizione del pilota e al corretto collocamento dei comandi, con l’obbiettivo di massimizzare la visibilità ed il confort di guida della vettura. Con questo primo studio quindi è stata intrapresa la fase progettuale vera e propria del telaio, la quale si è svolta in modo parallelo ma trasversale a quella di tutti gli altri sistemi principali ed ausiliari di cui è equipaggiata la vettura. In questa fase fortemente iterativa si vanno a cercare non le soluzioni migliori ma quelle “meno peggio”: la coperta è sempre troppo corta e il compromesso la fa da padrone. Terminata questa fase si è passati a quella realizzativa che ha avuto luogo presso l’azienda modenese Marchesi & C. che fin dal 1965 si è occupata della realizzazione di telai da corsa per importanti aziende del settore automobilistico. Grazie al preziosissimo supporto dell’azienda, a valle della realizzazione, è stato possibile condurre una prova di rigidezza sul telaio completo della vettura. Questa, oltre a fornire il valore di rigidezza dello chassis, ha permesso di identificare le sezioni della struttura più cedevoli, fornendo una valida base di partenza per l’ottimizzazione di telai per vetture future. La vettura del team UniBo Motorsport ha visto il suo esordio nell’evento italiano della Formula SAE® tenutosi nel circuito di Varano de Melegari nella prima settimana di settembre, chiudendo con un ottimo 16esimo posto su un totale di 55 partecipanti. Il team ha partecipato inoltre alla Formula Student Spain tenutasi sul famoso circuito di Montmelò alla fine dello stesso mese, raggiungendo addirittura il podio con il secondo posto tra i 18 partecipanti. La stagione si chiude quindi con due soli eventi all’attivo della vettura, ma con un notevole esordio ed un ottimo secondo posto assoluto. L’ateneo di Bologna si inserisce al sessantasettesimo posto nella classifica mondiale, come seconda università italiana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel corso di questa tesi analizzeremo che cos'è il cloud computing, illustrando i contratti di service level agreement e le soluzioni presenti nel mercato.