106 resultados para aritmetica di Peano teorema di Goodstein
Resumo:
Nel primo capitolo sono presentate alcune generalità: le principali proprietà delle funzioni a variazione limitata di una variabile partendo dalla definizione classica introdotta da Jordan e sono ricordati alcuni risultati già studiati durante questi anni di studio. Nel secondo capitolo dimostriamo un importante risultato sulla differenziabilità quasi ovunque delle funzioni a variazione limitata. Questo risultato è ottenuto come conseguenza di un teorema di ricoprimento di Vitali, che abbiamo dimostreremato come risultato più generale in R^n. Abbiamo visto inoltre la definizione di funzione assolutamente continua e caratterizzato questa classe di funzioni, collegandole proprio alla validità del teorema fondamentale del calcolo integrale (la validità del teorema fondamentale per funzioni è in effetti una caratterizzazione di questa classe di funzioni). Nel terzo capitolo infine, dopo aver fornito la definizione moderna di funzione a variazione limitata (funzione BV), si sono confrontate le due definizioni provandone la loro equivalenza.