110 resultados para Cosmologia Guarani
Resumo:
Galaxy clusters and groups are the most massive bounded structures and the knots of the large-scale structure of the Universe. These structures reside in dark matter haloes, hosting tens to hundreds of galaxies and they are filled with hot and rarefied gas. Radio Galaxies are a peculiar class of galaxies with a luminosity in the radio band up to 10^46 erg/s between 10 MHz and 100 GHz. These galaxies are a subclass of AGN in which there is accretion on the Super Massive Black Hole. The accretion generates jets of relativistic particles and magnetic fields which lose energy through synchrotron radiation, best observable at radio frequencies. The study of the spectral ageing of the AGN plasma is fundamental to understand its evolution, interaction with the environment and to constrain the AGN duty cycle. n this thesis, we have investigated the duty cycle of the nearby remnant radio galaxy NGC 6086, located in the centre of the galaxy group Abell 2162. We have made major steps forward thanks to the new high-sensitivity interferometers in the low-frequency radio band. We have detected for the first time three filaments of emission and a second couple of lobes. We have performed an integrated and resolved analysis on the previously known inner lobes, the new filaments and the older outer lobes. We have performed an age estimate of the two pairs of lobes to give constraints on the duty cycle of the source and an estimate of its active time.
Resumo:
A recent integral-field spectroscopic (IFS) survey, the MASSIVE survey (Ma et al. 2014), observed the 116 most massive (MK < −25.3 mag, stellar mass M∗ > 10^11.6 M⊙) early-type galaxies (ETGs) within 108 Mpc, out to radii as large as 40 kpc, that correspond to ∼ 2 − 3 effective radii (Re). One of the major findings of the MASSIVE survey is that the galaxy sample is split nearly equally among three groups showing three different velocity dispersion profiles σ(R) outer of a radius ∼ 5 kpc (falling, flat and rising with radius). The purpose of this thesis is to model the kinematic profiles of six ETGs included in the MASSIVE survey and representative of the three observed σ(R) shapes, with the aim of investigating their dynamical structure. Models for the chosen galaxies are built using the numerical code JASMINE (Posacki, Pellegrini, and Ciotti 2013). The code produces models of axisymmetric galaxies, based on the solution of the Jeans equations for a multicomponent gravitational potential (supermassive black hole, stars and dark matter halo). With the aim of having a good agreement between the kinematics obtained from the Jeans equations, and the observed σ and rotation velocity V of MASSIVE (Veale et al. 2016, 2018), I derived constraints on the dark matter distribution and orbital anisotropy. This work suggests a trend of the dark matter amount and distribution with the shape of the velocity dispersion profiles in the outer regions: the models of galaxies with flat or rising velocity dispersion profiles show higher dark matter fractions fDM both within 1 Re and 5 Re. Orbital anisotropy alone cannot account for the different observed trends of σ(R) and has a minor effect compared to variations of the mass profile. Galaxies with similar stellar mass M∗ that show different velocity dispersion profiles (from falling to rising) are successfully modelled with a variation of the halo mass Mh.
Resumo:
Despite the success of the ΛCDM model in describing the Universe, a possible tension between early- and late-Universe cosmological measurements is calling for new independent cosmological probes. Amongst the most promising ones, gravitational waves (GWs) can provide a self-calibrated measurement of the luminosity distance. However, to obtain cosmological constraints, additional information is needed to break the degeneracy between parameters in the gravitational waveform. In this thesis, we exploit the latest LIGO-Virgo-KAGRA Gravitational Wave Transient Catalog (GWTC-3) of GW sources to constrain the background cosmological parameters together with the astrophysical properties of Binary Black Holes (BBHs), using information from their mass distribution. We expand the public code MGCosmoPop, previously used for the application of this technique, by implementing a state-of-the-art model for the mass distribution, needed to account for the presence of non-trivial features, i.e. a truncated power law with two additional Gaussian peaks, referred to as Multipeak. We then analyse GWTC-3 comparing this model with simpler and more commonly adopted ones, both in the case of fixed and varying cosmology, and assess their goodness-of-fit with different model selection criteria, and their constraining power on the cosmological and population parameters. We also start to explore different sampling methods, namely Markov Chain Monte Carlo and Nested Sampling, comparing their performances and evaluating the advantages of both. We find concurring evidence that the Multipeak model is favoured by the data, in line with previous results, and show that this conclusion is robust to the variation of the cosmological parameters. We find a constraint on the Hubble constant of H0 = 61.10+38.65−22.43 km/s/Mpc (68% C.L.), which shows the potential of this method in providing independent constraints on cosmological parameters. The results obtained in this work have been included in [1].
Resumo:
The study of galaxies at high redshift plays a crucial role to understand the mechanism of galaxy formation and evolution. At redshifts just after the epoch of re-ionization (4
Resumo:
Dwarf galaxies often experience gravitational interactions from more massive companions. These interactions can deform galaxies, turn star formation on or off, or give rise to mass loss phenomena. In this thesis work we propose to study, through N-body simulations, the stellar mass loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the Milky Way gravitational potential. Which is a key phenomenon to explain the mass budget problem: the Fornax globular clusters together have a stellar mass comparable to that of Fornax itself. If we look at the stellar populations which they are made of and we apply the scenarios of stellar population formation we find that, originally, they must have been >= 5 times more massive. For this reason, they must have lost or ejected stars through dynamic interactions. However, as presented in Larsen et al (2012), field stars alone are not sufficient to explain this scenario. We may assume that some of those stars fell into Fornax, and later were stripped by Milky Way. In order to study this solution we built several illustrative single component simulations, with a tabulated density model using the P07ecc orbit studied from Battaglia et al (2015). To divide the single component into stellar and dark matter components we have defined a posterior the probability function P(E), where E is the initial energy distribution of the particles. By associating each particle with a fraction of stellar mass and dark matter. In this way we built stellar density profiles without repeating simulations. We applied the method to Fornax using the profile density tables obtained in Pascale et al (2018) as observational constraints and to build the model. The results confirm the results previously obtained with less flexible models by Battaglia et al (2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible within 3 kpc, too small to solve the mass budget problem.