207 resultados para vetro strutturale


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACQUE E NAVIGAZIONE UN NUOVO MUSEO DELLE ACQUE E DELLA NAVIGAZIONE A RAVENNA L’immagine dell’acqua a Ravenna fa riscoprire una storia della città fatta di corsi e specchi d’acqua. Questi, a causa del tempo e dell’opera dell’uomo scomparvero o mutarono profondamente la loro conformazione. L’importanza quindi dello studio di come questa città abbia convissuto negli anni con l’acqua e come l’uomo si sia adattato a queste condizioni è notevole. Ora Ravenna è una citta di “terra”, collegata al mare solo tramite il canale Candiano, le attività e la vita dell’uomo si sono staccate dall’acqua e nel tempo il mare è diventato solo una “vicinanza” perdendo tutto quel fascino e quell’importanza che possedeva nei secoli precedenti. Tra i tanti aspetti del legame passato tra l’uomo e l’acqua, l’imbarcazione risulta il mezzo più tipico e caratterizzante. Grazie a tanti studi fino ad ora compiuti è possibile ricostruire una catalogazione delle imbarcazioni che hanno fatto parte della storia acquatica di Ravenna e che quindi hanno composto la sua storia. L’imbarcazione costituisce una memoria storica e tecnica, essa riflette i cambiamenti storici e tecnico-evolutivi della civiltà delle acque. L’evoluzione delle barche è delle navi è progredita di pari passo con i cambiamenti delle esigenze dell’uomo, fin dall’antichità. Una rappresentazione tra imbarcazione, storia dell'uomo e geomorfologia della acque a Ravenna fa sì che l’argomento ricopra ambiti generali sull’intera civiltà che ha popolato il ravennate. Il museo delle acque a Ravenna vuole essere perciò un percorso nel passato della città, alla scoperta dell’antico legame con l’acqua, legame che forse ormai è stato dimenticato e di cui a volte si ignora l’esistenza. Questo non comporta il forzare un legame ormai abbandonato, ma un rivivere i momenti che hanno caratterizzato la crescita della città fino allo stato attuale. Questo museo mira a integrare il cospicuo patrimonio storico museale di Ravenna andando a colmare una mancanza da me ritenuta importante, appunto una memoria storica delle vita acquatica della città e dei propri abitanti nel tempo. Il tema museale studiato e analizzato verterà su un percorso nella storia della navigazione e del legame che Ravenna ebbe con l’acqua fin dalle sue origini. Questo importante tema prevederà l’esposizione di importanti relitti navali e ritrovamenti storici per i quali sarà obbligatoria l’organizzazione di appositi spazi espositivi per un’ottima conservazione. L’edificio appare come un rigido corpo all’esterno, rivestito in pietra basaltica grigia con tonalità diverse, mentre dal lato del canale risulta notevolmente più aperto, con un lungo porticato in affaccio diretto sull’acqua che segue tutta la forma del l’edificio stesso e che si interrompe solo in prossimità della grande hall d’ingresso in vetro e acciaio. Queste caratteristiche permettono di creare due facce completamente diverse, una molto chiusa e una invece molto aperta, per enfatizzare il senso di scoperta del “mondo acqua” al momento dell’ingresso nell’edificio. Due realtà molto diverse tra loro. Il lato, che affaccia sulla nuova piazza creata all’interno dell’area, rivestito in pietra basaltica grigia, rende una sensazione di chiusura fisica, creata appositamente per stimolare la scoperta dell’acqua sul lato opposto. La facciata è rotta in maniera irregolare da feritoie, quasi come una enorme roccia sull’acqua, sul riferimento del MuMok, il Museo di Arte Moderna Fondazione Ludwig di Ortner & Ortner aVienna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il progetto è incentrato sulla riqualificazione dell’area occupata dai vecchi stabilimenti dell’Eridania a Forlì risalenti al 1900, ora di proprietà della Cooperativa Muratori di Verucchio. L’area è situata in una zona a Nord del centro storico, adiacente alla linea ferroviaria. Attualmente verte in stato di forte abbandono dal 1973, anno della chiusura dello stabilimento: è la più vasta area dismessa in prossimità del centro storico, una ferita aperta nel cuore della città. Le dimensioni e la vicinanza al centro cittadino costituiscono il maggiore potenziale dell’area che si presta per questo all’introduzione di funzioni di pubblico interesse, spazi per la cultura e lo svago, edifici residenziali e commerciali; inoltre, essendo caratterizzata da una prevalenza di spazi verdi, nasce spontanea l’ipotesi di un nuovo grande parco urbano al servizio della comunità. Oltre al valore dell’area è da sottolineare il pregio architettonico di alcuni degli edifici che possiamo considerare come grandiosi esempi di archeologia industriale. Gli edifici, attualmente, versano in un notevole stato di degrado dovuto all’abbandono dello stabilimento e al grave incendio che nel 1989 ha distrutto i capannoni di deposito, risparmiando però il corpo principale dell’intervento. Nonostante ciò, gli edifici hanno conservato pressoché intatta la loro struttura e, di conseguenza, l’immagine originaria nel suo complesso. È quindi possibile ipotizzarne il mantenimento, una volta effettuati i necessari interventi di consolidamento strutturale e ristrutturazione architettonica. Il progetto di recupero dell’area nasce quindi da un’esigenza concreta e fortemente sentita dalla cittadinanza. Si deve inoltre considerare che, senza un intervento tempestivo, si va incontro all’aggravamento dello stato delle strutture superstiti, fino ad un possibile collasso, rischiando così di perdere definitivamente un prezioso bene del patrimonio architettonico della città. Il dibattito sull’ex Eridania e le sue possibilità di trasformazione si è riacceso negli ultimi anni, soprattutto in seguito all’incendio dell’89. In particolare, il PRG di Forlì del 2003, successivamente adeguato alla legge regionale 20/2000 nel 2007, definisce un nuovo piano di riqualificazione per le aree dismesse e le aree ferroviarie, con nuovi contenuti e procedure d’intervento. Nel 2008 la Cooperativa Muratori di Verucchio, proprietaria dell’area e degli stabilimenti, ha proposto un accordo di programma che prevedeva per il corpo centrale dello zuccherificio la destinazione a caserma delle forze dell’ordine, e per gli spazi circostanti la costruzione di case popolari, di un centro sportivo, di residenze private, edifici per uffici e negozi, oltre al mantenimento di ampie aree verdi. Il progetto non è stato finora realizzato a causa degli alti costi d’intervento per la messa in sicurezza degli edifici preesistenti. Nello steso anno l’associazione Italia Nostra ha proposto l’organizzazione di un concorso di idee per il recupero dell’area, ipotizzando per lo stabilimento principale la trasformazione in un ampio spazio coperto, aperto a diverse e numerose possibilità di destinazione rivolte alla collettività. Gli alti costi di recupero, insieme all’immobilismo amministrativo e ai limiti legati a una burocrazia complessa, e spesso inefficace, hanno finora invalidato qualsiasi tipo d’intervento e, ad oggi, la questione del riutilizzo dello zuccherificio rimane una domanda aperta ancora senza risposta. E’ quindi importante continuare ad interrogarsi sul futuro dell’area progredendo, se non con fatti concreti, con nuove idee e proposte, in attesa che si creino le condizioni necessarie ad intervenire e ridare alla città una parte di sé, arricchita di nuovo valore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi di laurea che verrà qui di seguito presentata, ha l’obiettivo di far vedere come interventi di consolidamento attuati al fine di mettere in sicurezza una struttura esistente possano essere utilizzati come presidi per il riuso, occasioni in cui far fondere in progetto architettonico di recupero di un manufatto con interventi tecnologici-strutturali atti a salvaguardarlo. Si cercherà perciò di far andare di pari passo questi due elementi evitando che uno di essi prevalga sull’altro e considerandoli in modo unitario e non come due progetti separati. L’edificio preso in esame è il Castello di Zocco. Risalente al XII secolo, è situato su una piccola collina lungo le sponde del Lago Trasimeno in Provincia di Perugia. Esso è costituito da una cinta muraria al cui interno sono presenti pochi edifici in pessimo stato di conservazione, è attualmente in disuso e presenta notevoli dissesti strutturali. Il castello è stato studiato da tutti i punti di vista al fine di formulare un’ipotesi di riutilizzo. Ne è stata inizialmente analizzata la posizione geografica-territoriale elemento significativo sia per la sua storia che per la sua organizzazione insediativa. Successivamente, dallo studio storico, si è intrapresa un’analisi dei sistemi costruttivi e della consistenza indispensabili per una migliore comprensione del complesso. Uno studio approfondito di tutto ciò, unito ad un’analisi dettagliata dei dissesti statici e dei meccanismi di danno e collasso, è stato il punto di partenza per l’elaborazione di un progetto architettonico che andasse di pari passo con il consolidamento strutturale compatibile con l’edificio stesso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well-known that crystalline materials obtain their fundamental physical properties from the molecular arrangement within the solid, and altering the placement and or interactions between these molecules can impact the properties of the particular solid. Solid state chemistry looks at an attempt to alter the chemical and physical solid-state properties of APIs through many different strategies as the formation of salts, polymorphs, hydrates, solvates, and cocrystals. The final aim of this work is to study the chemical and physical propriety of new crystal structures. The work consists of three parts. The first is the cocrystallization of α,ω-alkanedicarboxylics acids with pirimidine. Single-crystal X-ray diffraction analysis of this adduct have been carried out at RT, 150 and 200 K. The cocrystals show an alteration of their melting point similar to pure acids. The two significant deviations are for the cocrystals with succinico and glutarico acids. The second object of work is the structure determination of β polymorph undecandioic acids. In literature is known the other polymorph α. We observed that the thermodynamic relation for this dimorphics system is monotropic. In the third part we synthesized and analyzed the stability of four new salts of serine and oxalic acid. This project highlights the advantage of the solid state synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi riguarda lo studio della reazione fotoindotta del 9-10 dinitroantracene (DNO2A) ad antrachinone (AQ) con l’ausilio di una tecnica spettroscopica senza precedenti nel campo. Lo studio tramite spettroscopia Raman dei fononi reticolari (variazioni fisiche) e dei modi intramolecolari (variazioni chimiche) di reagente e prodotto, simultaneamente al manifestarsi della reazione, è infatti un metodo potente, diretto, in situ e non distruttivo per studiare una reazione solido-solido che coinvolge spettacolari movimenti micro-meccanici nel cristallo singolo del reagente durante l’irraggiamento. L’ulteriore vantaggio della confocalità amplia ulteriormente il campo di applicazione di questa tecnica, permettendo un’analisi su scala spaziale inferiore al micrometro, con la possibilità di mappature a livello molecolare da confrontare con l’immagine microscopica del campione[9]. Abbiamo inoltre visto che ampie ricostruzioni strutturali avvengono nel corso della reazione. Le conseguenze, a livello microscopico, si riflettono sulla modificazione strutturale della cella elementare; quelle a livello macroscopico mostrano una sorprendente relazione fotone incidente/energia meccanica prodotta. Infine lo studio di questa reazione in celle ad alta pressione ha ampliato il corpo di conoscenze della reazione oggetto della tesi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con il termine Smart Grid si intende una rete urbana capillare che trasporta energia, informazione e controllo, composta da dispositivi e sistemi altamente distribuiti e cooperanti. Essa deve essere in grado di orchestrare in modo intelligente le azioni di tutti gli utenti e dispositivi connessi al fine di distribuire energia in modo sicuro, efficiente e sostenibile. Questo connubio fra ICT ed Energia viene comunemente identificato anche con il termine Smart Metering, o Internet of Energy. La crescente domanda di energia e l’assoluta necessità di ridurre gli impatti ambientali (pacchetto clima energia 20-20-20 [9]), ha creato una convergenza di interessi scientifici, industriali e politici sul tema di come le tecnologie ICT possano abilitare un processo di trasformazione strutturale di ogni fase del ciclo energetico: dalla generazione fino all’accumulo, al trasporto, alla distribuzione, alla vendita e, non ultimo, il consumo intelligente di energia. Tutti i dispositivi connessi, diventeranno parte attiva di un ciclo di controllo esteso alle grandi centrali di generazione così come ai comportamenti dei singoli utenti, agli elettrodomestici di casa, alle auto elettriche e ai sistemi di micro-generazione diffusa. La Smart Grid dovrà quindi appoggiarsi su una rete capillare di comunicazione che fornisca non solo la connettività fra i dispositivi, ma anche l’abilitazione di nuovi servizi energetici a valore aggiunto. In questo scenario, la strategia di comunicazione sviluppata per lo Smart Metering dell’energia elettrica, può essere estesa anche a tutte le applicazioni di telerilevamento e gestione, come nuovi contatori dell’acqua e del gas intelligenti, gestione dei rifiuti, monitoraggio dell’inquinamento dell’aria, monitoraggio del rumore acustico stradale, controllo continuo del sistema di illuminazione pubblico, sistemi di gestione dei parcheggi cittadini, monitoraggio del servizio di noleggio delle biciclette, ecc. Tutto ciò si prevede possa contribuire alla progettazione di un unico sistema connesso, dove differenti dispositivi eterogenei saranno collegati per mettere a disposizione un’adeguata struttura a basso costo e bassa potenza, chiamata Metropolitan Mesh Machine Network (M3N) o ancora meglio Smart City. Le Smart Cities dovranno a loro volta diventare reti attive, in grado di reagire agli eventi esterni e perseguire obiettivi di efficienza in modo autonomo e in tempo reale. Anche per esse è richiesta l’introduzione di smart meter, connessi ad una rete di comunicazione broadband e in grado di gestire un flusso di monitoraggio e controllo bi-direzionale esteso a tutti gli apparati connessi alla rete elettrica (ma anche del gas, acqua, ecc). La M3N, è un’estensione delle wireless mesh network (WMN). Esse rappresentano una tecnologia fortemente attesa che giocherà un ruolo molto importante nelle futura generazione di reti wireless. Una WMN è una rete di telecomunicazione basata su nodi radio in cui ci sono minimo due percorsi che mettono in comunicazione due nodi. E’ un tipo di rete robusta e che offre ridondanza. Quando un nodo non è più attivo, tutti i rimanenti possono ancora comunicare tra di loro, direttamente o passando da uno o più nodi intermedi. Le WMN rappresentano una tipologia di rete fondamentale nel continuo sviluppo delle reti radio che denota la divergenza dalle tradizionali reti wireless basate su un sistema centralizzato come le reti cellulari e le WLAN (Wireless Local Area Network). Analogamente a quanto successo per le reti di telecomunicazione fisse, in cui si è passati, dalla fine degli anni ’60 ai primi anni ’70, ad introdurre schemi di rete distribuite che si sono evolute e man mano preso campo come Internet, le M3N promettono di essere il futuro delle reti wireless “smart”. Il primo vantaggio che una WMN presenta è inerente alla tolleranza alla caduta di nodi della rete stessa. Diversamente da quanto accade per una rete cellulare, in cui la caduta di una Base Station significa la perdita di servizio per una vasta area geografica, le WMN sono provviste di un’alta tolleranza alle cadute, anche quando i nodi a cadere sono più di uno. L'obbiettivo di questa tesi è quello di valutare le prestazioni, in termini di connettività e throughput, di una M3N al variare di alcuni parametri, quali l’architettura di rete, le tecnologie utilizzabili (quindi al variare della potenza, frequenza, Building Penetration Loss…ecc) e per diverse condizioni di connettività (cioè per diversi casi di propagazione e densità abitativa). Attraverso l’uso di Matlab, è stato quindi progettato e sviluppato un simulatore, che riproduce le caratteristiche di una generica M3N e funge da strumento di valutazione delle performance della stessa. Il lavoro è stato svolto presso i laboratori del DEIS di Villa Grifone in collaborazione con la FUB (Fondazione Ugo Bordoni).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La necessità di conservazione e recupero di murature, di qualsiasi interesse storico/architettonico, ha evidenziato la necessità di conoscere il più dettagliatamente possibile le caratteristiche strutturali delle opere interessate: un intervento risulterà tanto più efficace e adatto agli scopi prefissi quanto maggiore sarà la conoscenza dell’opera, della sua evoluzione, dei materiali utilizzati per la realizzazione, della tecnica costruttiva e della struttura portante. Spesso è necessario eseguire interventi di adeguamento sismico di comuni edifici su cui poter intervenire più o meno indiscriminatamente, mentre, per opere di interesse storico è necessario ridurre al minimo l’invasività degli interventi: in tutti e due i casi, una buona riuscita dell’intervento dipende dalla conoscenza dell’organismo strutturale sul quale si deve operare. Come spesso accade, anche per opere di recente costruzione, risulta difficile poter recuperare i dati progettuali (disegni e calcoli) e spesso le tecniche e le tipologie utilizzate per le costruzioni si differenziavano da zona a zona, così come diversi erano i materiali da costruzione; risulta quindi evidente che per progettare una serie di interventi di recupero è necessario poter ottenere il maggior numero di informazioni al riguardo. Diverse sono le esperienze maturate in questo campo in tutta Europa e queste hanno mostrato come non è sufficiente intervenire con tecniche innovative per adeguare agli standard attuali di sicurezza opere del passato: infatti, in molti casi, l’applicazione sbagliata di queste tecniche o gli interventi progettati in modo non adeguato non hanno svolto il loro compito e in alcuni casi hanno peggiorato la situazione esistente. Dalle esperienze maturate è stato possibile osservare che anche le migliore tecniche di recupero non possono risultare efficaci senza un’adeguata conoscenza dello stato di degrado degli edifici, del loro assetto strutturale e delle possibili carenze. La diagnostica strutturale si vuole inserire proprio in questo livello potendo fornire ad un progettista tutte le informazioni necessarie per effettuare al meglio ed in maniera efficace gli interventi di recupero e restauro necessari. Oltre questi aspetti, le analisi diagnostiche possono essere utilizzate anche per verificare l’efficacia degli interventi effettuati. Diversi sono gli aspetti che si possono analizzare in un’indagine di diagnostica ed in base alle esigenze e alle necessità del rilievo da effettuare sono varie le tecniche a disposizione, ognuna con le sue peculiarità e potenzialità. Nella realizzazione di questa tesi sono state affrontate diverse problematiche che hanno previsto sia l’analisi di situazioni reali in cantiere, sia lo studio in laboratorio. La prima parte del presente elaborato prevede lo studio delle attività svolte a Palazzo Malvezzi, attuale sede della Provincia di Bologna. L’edificio, di interesse storico, ha subito diverse trasformazioni durate la sua vita ed in alcuni casi, queste, eseguite con tecnologie e materiali inadatti, hanno provocato variazioni nell’assetto statico della struttura; inoltre, il palazzo, è soggetto a movimenti a livello di fondazione in quanto è presente una faglia di subsidenza che attraversa l’edificio. Tutte queste problematiche hanno creato movimenti differenziali alla struttura in elevazione che si sono evidenziati con crepe distribuite in tutto l’edificio. Il primo aspetto analizzato (capitoli 4 e 5) è lo studio della profondità delle fessure presenti nel solaio della sala Rossa, sede dei comunicati stampa e delle conferenze della Provincia. Senza dubbio antiestetiche, le crepe presenti in una struttura, se sottovalutate, possono compromettere notevolmente le funzioni statiche dell’elemento in cui si sviluppano: la funzione di protezione fornita dal solaio o da qualsiasi altro elemento strutturale alle armature in questo immerse, viene meno, offrendo vie preferenziali a possibili situazioni di degrado, specialmente se in condizioni ambientali aggressive. E' facile intuire, quindi, che un aspetto all’apparenza banale come quello delle fessure non può essere sottovalutato. L’analisi è stata condotta utilizzando prove soniche ed impact-echo, tecniche che sfruttano lo stresso principio, la propagazione delle onde elastiche nel mezzo, ma che si differenziano per procedure di prova e frequenze generate nel test. Nel primo caso, la presenza del martello strumentato consente di valutare anche la velocità di propagazione delle onde elastiche, fenomeno utilizzato per ottenere indicazioni sulla compattezza del mezzo, mentre nel secondo non è possibile ricavare queste informazioni in quanto la tecnica si basa solamente sullo studio in frequenza del segnale. L’utilizzo dell’impact-echo è stato necessario in quanto la ristilatura effettuata sulle fessure scelte per l’analisi, non ha permesso di ottenere risultati utili tramite prove soniche ; infatti, le frequenze generate risultano troppo basse per poter apprezzare queste piccole discontinuità materiali. La fase di studio successiva ha previsto l’analisi della conformazione dei solai. Nel capitolo 6, tale studio, viene condotto sul solaio della sala Rossa con lo scopo di individuarne la conformazione e la presenza di eventuali elementi di rinforzo inseriti nelle ristrutturazioni avvenute nel corso della vita del palazzo: precedenti indagini eseguite con endoscopio, infatti, hanno mostrato una camera d’aria ed elementi metallici posizionati al di sotto della volta a padiglione costituente il solaio stesso. Le indagini svolte in questa tesi, hanno previsto l’utilizzo della strumentazione radar GPR: con questa tecnica, basata sulla propagazione delle onde elettromagnetiche all’interno di un mezzo, è possibile variare rapidamente la profondità d’ispezione ed il dettaglio ottenibile nelle analisi cambiando le antenne che trasmettono e ricevono il segnale, caratteristiche fondamentali in questo tipo di studio. I risultati ottenuti hanno confermato quanto emerso nelle precedenti indagini mostrando anche altri dettagli descritti nel capitolo. Altro solaio oggetto d’indagine è quello della sala dell’Ovale (capitoli 7 e 8): costruito per dividere l’antica sala da ballo in due volumi, tale elemento è provvisto al suo centro di un caratteristico foro ovale, da cui ne deriva il nome. La forma del solaio lascia supporre la presenza di una particolare struttura di sostegno che le precedenti analisi condotte tramite endoscopio, non sono riuscite a cogliere pienamente. Anche in questo caso le indagini sono state eseguite tramite tecnica radar GPR, ma a differenza dei dati raccolti nella sala Rossa, in questo caso è stato possibile creare un modello tridimensionale del mezzo investigato; inoltre, lo studio è stato ripetuto utilizzando un’antenna ad elevata risoluzione che ha consentito di individuare dettagli in precedenza non visibili. Un ulteriore studio condotto a palazzo Malvezzi riguarda l’analisi della risalita capillare all’interno degli elementi strutturali presenti nel piano interrato (capitolo 9): questo fenomeno, presente nella maggior parte delle opere civili, e causa di degrado delle stesse nelle zone colpite, viene indagato utilizzando il radar GPR. In questo caso, oltre che individuare i livelli di risalita osservabili nelle sezioni radar, viene eseguita anche un’analisi sulle velocità di propagazione del segnale e sulle caratteristiche dielettriche del mezzo, variabili in base al contenuto d’acqua. Lo scopo è quello di individuare i livelli massimi di risalita per poterli confrontare con successive analisi. Nella fase successiva di questo elaborato vengono presentate le analisi svolte in laboratorio. Nella prima parte, capitolo 10, viene ancora esaminato il fenomeno della risalita capillare: volendo studiare in dettaglio questo problema, sono stati realizzati dei muretti in laterizio (a 2 o 3 teste) e per ognuno di essi sono state simulate diverse condizioni di risalita capillare con varie tipologie di sale disciolto in acqua (cloruro di sodio e solfato di sodio). Lo scopo è di valutare i livelli di risalita osservabili per diverse tipologie di sale e per diverse concentrazioni dello stesso. Ancora una volta è stata utilizzata la tecnica radar GPR che permette non solo di valutare tali livelli, ma anche la distribuzione dell’umidità all’interno dei provini, riuscendo a distinguere tra zone completamente sature e zone parzialmente umide. Nello studio è stata valutata anche l’influenza delle concentrazioni saline sulla propagazione del segnale elettromagnetico. Un difetto delle tecniche di diagnostica è quello di essere strumenti qualitativi, ma non quantitativi: nel capitolo 11 viene affrontato questo problema cercando di valutare la precisione dei risultati ottenuti da indagini condotte con strumentazione radar GPR. Studiando gli stessi provini analizzati nel capitolo precedente, la tecnica radar è stata utilizzata per individuare e posizionare i difetti (muretti a 3 teste) e le pietre (muretti a 2 teste) inserite in questi elementi: i risultati ottenuti nella prova sono stati confrontati, infine, con la reale geometria. Nell’ultima parte (capitolo 12), viene esaminato il problema dell’individuazione dei vuoti all’interno di laterizi: per questo scopo sono state create artificialmente delle cavità di diversa forma e a diverse profondità all’interno di laterizi pieni che, dopo un trattamento in cella climatica per aumentarne la temperatura, sono stati sottoposti a riprese termografiche nella fase di raffreddamento. Lo scopo di queste prove è quello di valutare quale sia la massima differenza di temperatura superficiale causata dai diversi difetti e per quale intervallo di temperature questa si verifica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I poriferi rappresentano un importante campo di ricerca anche in ambito applicativo in quanto potenzialmente utili come fonte di metaboliti secondari da impiegarsi in ambito clinico (antitumorali, antibiotici, antivirali, ecc.) e industriale (antifouling). I processi di biosilicificazione interessano invece per aspetti legati alle biotecnologie marine. Questo Phylum ha un importante ruolo strutturale e funzionale nell’ecologia dei popolamenti bentonici, in quanto può essere dominante in numerosi habitat e svolgere un ruolo ecologico fondamentale nelle dinamiche degli ecosistemi marini. Per questo, la variazione spaziale e temporale della loro abbondanza può avere effetti considerevoli su altri membri della comunità. Lo studio delle dinamiche di popolazione e del ciclo riproduttivo dei poriferi potrebbe permettere di valutare come i cambiamenti climatici ne influenzino la crescita e la riproduzione e potrebbe quindi fornire una base per lo sviluppo di corrette tecniche di gestione ambientale. La spugna Axinella polypoides è inserita all’interno delle liste di protezione della Convenzione di Berna e di Barcellona, dove sono elencate le specie da proteggere perché minacciate o in pericolo di estinzione. Questa specie, avendo una morfologia eretta, è fortemente minacciata soprattutto da attività antropiche quali pesca e ancoraggi, ma nonostante questo la letteratura relativa ad essa è scarsa, La sua importanza è legata soprattutto al recente utilizzo come modello per numerosi esperimenti. A. polypoides rappresenta, infatti, il più basso livello nella scala evolutiva in cui sono stati rinvenuti meccanismi biochimici cellulari di reazione all’aumento di temperatura (incremento dell’attività ADP-ribosil ciclasica, sintesi di ossido nitrico) tipici degli organismi superiori. Lo scopo di questa tesi è di aumentare le conoscenze sull’ecologia e sulla biologia di questo porifero, al fine di consentire una migliore predisposizione di eventuali piani di tutela. Dallo studio delle colonie effettuato presso l’Isola Gallinara (SV), emerge una dinamica di crescita lenta ed un ciclo riproduttivo estivo, coerentemente con quanto osservato per altre specie mediterranee del genere Axinella. Le analisi istologiche effettuate hanno mostrato variabilità temporale nella densità e nella dimensione di particolari cellule sferulose, che si ipotizza siano collegate a fenomeni di proliferazione cellulare e rigenerazione in seguito a danni. È stata individuata inoltre la presenza di una particolare tipologia cellulare dendritica la cui funzione si ritiene abbia affinità con le funzioni sensoriali di Phyla superiori. Queste osservazioni, e l’evidente vulnerabilità della specie agli impatti antropici, hanno evidenziato la necessità di sviluppare adeguati piani di monitoraggio e di conservazione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il presente elaborato tratta l'analisi del quadro fessurativo esistente nella porzione inferiore del broncone e della gamba sinistra del David di Michelangelo. Si sono effettuate indagini con ultrasuoni al fine di caratterizzare lo stato conservativo del marmo e per stimare la profondità delle lesioni presenti. Si è poi creato un modello agli elementi finiti della fessura di maggiori dimensioni presente nel broncone al fine di individuarne la profondità e confermare i risultati conseguiti con le prove ad ultrasuoni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli organismi biologici mostrano ricorrenti dinamiche di auto-organizzazione nei processi morfogenetici che sono alla base di come la materia acquisisce gerarchia e organizzazione.L’omeostasi è la condizione con la quale un corpo raggiunge il proprio equilibrio (termico, pressione, ecc.); un processo attraverso il quale questi sistemi stabilzzano le reazioni fisiologiche. Una delle caratteristiche fondamentali esibite da tali organismi è la capacità della materia di instaurare processi di auto-organizzazione, responsabile dei processi di ottimizzazione che guidano all’uso efficiente dell’energia nella lotta per la sopravvivenza. Questa ottimizzazione non mira al raggiungimento di un risultato globale deterministico e “chiuso” (precedentemente stabilito e poi perseguito ad ogni costo), quanto piuttosto al raggiungimento di un’efficienza di processi locali con obiettivi multipli e necessità divergenti; tali processi interagiscono organizzando sistemi nei quali proprietà peculiari uniche emergono dalle interazioni descritte. Le esigenze divergenti non sono negoziate sulla base di un principio di esclusività (una esigenza esclude o elimina le altre) ma da un principio di prevalenza, dove le necessità non prevalenti non cessano di esistere ma si modificano in funzione di quelle prevalenti (il proprio campo di espressione è vincolato dai percorsi tracciati in quello delle esigenze prevalenti). In questa tesi si descrive un’applicazione ad uno specifico caso di studio di progettazione architettonica: un parco con spazi polifunzionali nella città di Bologna. L’obiettivo principale del progetto Homeostatic Pattern è quello di dimostrare come questo tipo di processi possano essere osservati, compresi e traslati in architettura: come per gli organismi biologici, in questo progetto gli scambi di materia ed energia (stabilità, respirazione, porosità alla luce) sono regolati da sistemi integrati efficienti piuttosto che da raggruppamenti di elementi mono-ottimizzati. Una specifica pipeline di software è stata costituita allo scopo di collegare in modo bidirezionale e senza soluzione di continuità un software di progettazione parametrica generativa (Grasshopper®) con software di analisi strutturale ed ambientale (GSA Oasys®, Autodesk® Ecotect® analysis), riconducendo i dati nella stessa struttura attraverso cicli di feedback. Il sistema così ottenuto mostra caratteristiche sia a scala macroscopica, come la possibilità di utilizzo della superficie esterna che permette anche un’estensione dell’area verde (grazie alla continuità della membrana), sia alla scala del componente, come la propria capacità di negoziare, tra le altre, la radiazione solare e la modulazione della luce, così come la raccolta capillare delle acque meteoriche. Un sistema multiperformante che come tale non persegue l’ottimizzazione di una singola proprietà ma un miglioramento complessivo per una maggiore efficienza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il basso tasso d'usura e l'alta resistenza meccanica dell'UHMWPE reticolato e additivato ha posto l'attenzione verso l'uso di teste femorali con diametri maggiori per diminuire il rischio d'impingement e dislocazioni. Questo richiede l'utilizzo d'inserti acetabolari più sottili di quelli attualmente in commercio. In quest'ottica è necessario porre particolare attenzione alla resistenza meccanica d'inserti più sottili, e all'efficacia della vitamina E nel combattere l'effetto dell'ossidazione che si manifesta in seguito al processo di reticolazione. Lo scopo del lavoro è quindi di studiare un inserto più sottile di quelli attualmente in commercio per verificarne le performance. Tale studio è svolto su una serie di taglie (compreso inserto prodotto ad-hoc con spessore di 3,6 mm) con spessore di 5,6 mm e di 3,6 mm dalle quali viene isolato il worst-case tramite analisi FEM. Con prove sperimentali è testata la resistenza meccanica del worst-case, e sono monitorate le deformazioni subite e l'ossidazione del campione. Dagli studi FEM è risultato che le tensioni sono mediamente le stesse in tutti i campioni, anche se si sono registrate tensioni leggermente superiori nella taglia intermedia. A differenza delle attese la taglia in cui si sono riscontrate le tensioni massime è la F (non è l'inserto che ha diametro inferiore). A seguito della messa a punto del modello FEM si è identificato un valore d'attrito inferiore a quello atteso. In letteratura i valori d'attrito coppa-inserto sono più grandi del valore che si è identificato tramite simulazioni FEM. Sulla base dei risultati FEM è isolato il worst-case che viene quindi sottoposto a un test dinamico con 6 milioni di cicli atto a valutarne le performance. Gli inserti di spessore ridotto non hanno riportato alcun danno visibile, e la loro integrità strutturale non è stata modificata. Le considerazioni preliminari sono confermate dalla verifica al tastatore meccanico e dall'analisi chimica, dalle quale non si sono evidenziate particolari problematiche. Infatti, da queste verifiche si rileva che l'effetto del creep nella prova accelerata è pressoché trascurabile, e non si riscontrano variazioni dimensionali rilevanti. Anche dall'analisi chimica dei campioni non si evidenzia ossidazione. I valori d'ossidazione dell'inserto testato sono analoghi a quelli del campione non testato, anche quando viene confrontato con l'inserto in UHMWPE vergine si evidenzia un'ossidazione di molto superiore. Questo prova che la vitamina E inibisce i radicali liberi che quindi non causano l'ossidazione con susseguente fallimento dell'inserto. Dai risultati si vede che i campioni non subiscono danni rilevanti, le deformazioni elastiche monitorate nel test dinamico sono pressoché nulle, come gli effetti del creep misurati analizzando i dati ottenuti al tastatore meccanico. Grazie alla presenza della vitamina E non si ha ossidazione, quella rilevata è vicina a zero ed è da imputare alla lavorazione meccanica. Secondo tali considerazioni è possibile affermare che la riduzione dello spessore degli inserti da 5,6 mm a 3,6 mm non ha conseguenze critiche sul loro comportamento, e non comporta un fallimento del dispositivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studi preliminari condotti dal gruppo di ricerca presso il quale ho svolto il mio lavoro di tesi, avevano dimostrato che il poli[3-(6-bromoesil)tiofene] non regioregolare funzionalizzato con idrossifenilporfirina [TPPOH] può essere utilizzato con successo per la realizzazione di celle fotovoltaiche. Il presente lavoro di tesi di laurea magistrale è stato quindi incentrato sulla sintesi e caratterizzazione di un campione di poli[3-(6-bromoesil)tiofene] [PT6Br] ad elevata regioregolarità e sulla sua successiva funzionalizzazione con diverse percentuali di 5-(4-idrossifenil)-10,15,20-trifenilporfirina [TPPOH] per ottenere i copolimeri poli[3-(6-bromoesil)tiofene-co-(3-[5-(4-fenossi)-10,15,20-trifenilporfinil]esiltiofene)] [P(T6Br-co-T6TPP)], anch’essi con elevata percentuale di concatenamenti testa-coda, al fine di valutare se la regioregolarità del polimero sia in grado di migliorare l’efficienza fotovoltaica. Il campione che ha fornito i risultati migliori è stato poi ulteriormente testato eseguendo prove su celle trattate termicamente per tempi diversi, in modo tale da verificare come la durata del riscaldamento, che incide sull’organizzazione strutturale del materiale, influisca sulle prestazioni ottenibili dalla cella stessa. I prodotti polimerici sintetizzati sono stati caratterizzati mediante tecniche spettroscopiche (NMR, FT-IR, UV-Vis), ne sono determinate le proprietà termiche ed i pesi molecolari medi e la relativa distribuzione, mediante cromatografia a permeazione su gel (GPC). Le prestazioni delle celle fotovoltaiche realizzate utilizzando i copolimeri prodotti sono state misurate tramite un multimetro Keithley ed un Solar Simulator, che permette di riprodurre l’intero spettro della radiazione solare.