713 resultados para Cammino, Bambini, Parametri, Analisi, Sensori inerziali.
Resumo:
Uno dei temi più discussi ed interessanti nel mondo dell’informatica al giorno d’oggi è sicuramente il Cloud Computing. Nuove organizzazioni che offrono servizi di questo tipo stanno nascendo ovunque e molte aziende oggi desiderano imparare ad utilizzarli, migrando i loro centri di dati e le loro applicazioni nel Cloud. Ciò sta avvenendo anche grazie alla spinta sempre più forte che stanno imprimendo le grandi compagnie nella comunità informatica: Google, Amazon, Microsoft, Apple e tante altre ancora parlano sempre più frequentemente di Cloud Computing e si stanno a loro volta ristrutturando profondamente per poter offrire servizi Cloud adeguandosi così a questo grande cambiamento che sta avvenendo nel settore dell’informatica. Tuttavia il grande movimento di energie, capitali, investimenti ed interesse che l’avvento del Cloud Computing sta causando non aiuta a comprendere in realtà che cosa esso sia, al punto tale che oggi non ne esiste ancora una definizione univoca e condivisa. La grande pressione inoltre che esso subisce da parte del mondo del mercato fa sì che molte delle sue più peculiari caratteristiche, dal punto di vista dell’ingegneria del software, vengano nascoste e soverchiate da altre sue proprietà, architetturalmente meno importanti, ma con un più grande impatto sul pubblico di potenziali clienti. L’obbiettivo che ci poniamo con questa tesi è quindi quello di esplorare il nascente mondo del Cloud Computing, cercando di comprenderne a fondo le principali caratteristiche architetturali e focalizzando l’attenzione in particolare sullo sviluppo di applicazioni in ambiente Cloud, processo che sotto alcuni aspetti si differenzia molto dallo sviluppo orientato ad ambienti più classici. La tesi è così strutturata: nel primo capitolo verrà fornita una panoramica sul Cloud Computing nella quale saranno date anche le prime definizioni e verranno esposti tutti i temi fondamentali sviluppati nei capitoli successivi. Il secondo capitolo costituisce un approfondimento su un argomento specifico, quello dei Cloud Operating System, componenti fondamentali che permettono di trasformare una qualunque infrastruttura informatica in un’infrastruttura Cloud. Essi verranno presentati anche per mezzo di molte analogie con i classici sistemi operativi desktop. Con il terzo capitolo ci si addentra più a fondo nel cuore del Cloud Computing, studiandone il livello chiamato Infrastructure as a Service tramite un esempio concreto di Cloud provider: Amazon, che fornisce i suoi servizi nel progetto Amazon Web Services. A questo punto, più volte nel corso della trattazione di vari temi saremo stati costretti ad affrontare le problematiche relative alla gestione di enormi moli di dati, che spesso sono il punto centrale di molte applicazioni Cloud. Ci è parso quindi importante approfondire questo argomento in un capitolo appositamente dedicato, il quarto, supportando anche in questo caso la trattazione teorica con un esempio concreto: BigTable, il sistema di Google per la gestione della memorizzazione di grandi quantità di dati. Dopo questo intermezzo, la trattazione procede risalendo lungo i livelli dell’architettura Cloud, ricalcando anche quella che è stata l’evoluzione temporale del Cloud Computing: nel quinto capitolo, dal livello Infrastructure as a Service si passa quindi a quello Platform as a Service, tramite lo studio dei servizi offerti da Google Cloud Platform. Il sesto capitolo costituisce invece il punto centrale della tesi, quello che ne soddisfa l’obbiettivo principale: esso contiene infatti uno studio approfondito sullo sviluppo di applicazioni orientate all’ambiente Cloud. Infine, il settimo capitolo si pone come un ponte verso possibili sviluppi futuri, analizzando quali sono i limiti principali delle tecnologie, dei modelli e dei linguaggi che oggi supportano il Cloud Computing. In esso viene proposto come possibile soluzione il modello ad attori; inoltre viene anche presentato il framework Orleans, che Microsoft sta sviluppando negli ultimi anni con lo scopo appunto di supportare lo sviluppo di applicazioni in ambiente Cloud.
Resumo:
L'obiettivo dell'elaborato è definire gli importi delle voci fondamentali in ingresso al metodo di calcolo tramite un'intensa ricerca bibliografica in materia e realizzare un procedimento pratico di riferimento applicato al campo delle infrastrutture stradali. I risultati ottenuti dal calcolo sono stati verificati e confrontati con test di sensitività sulle variabili critiche (Analisi di Sensitività, Analisi di Switch e Analisi di Rischio).
Resumo:
Durante il lavoro di tesi si è analizzato e sviluppato un convertitore trifase multilivello di nuova generazione per l'allacciamento di un campo fotovoltaico multistringa alla rete elettrica. Si sono quindi studiati gli algoritmi di controllo di questa tipologia di inverter e sono state proposte soluzioni ad alcune delle più importanti problematiche incontrate in fase di sviluppo.
Resumo:
"I computer del nuovo millennio saranno sempre più invisibili, o meglio embedded, incorporati agli oggetti, ai mobili, anche al nostro corpo. L'intelligenza elettronica sviluppata su silicio diventerà sempre più diffusa e ubiqua. Sarà come un'orchestra di oggetti interattivi, non invasivi e dalla presenza discreta, ovunque". [Mark Weiser, 1991] La visione dell'ubiquitous computing, prevista da Weiser, è ormai molto vicina alla realtà e anticipa una rivoluzione tecnologica nella quale l'elaborazione di dati ha assunto un ruolo sempre più dominante nella nostra vita quotidiana. La rivoluzione porta non solo a vedere l'elaborazione di dati come un'operazione che si può compiere attraverso un computer desktop, legato quindi ad una postazione fissa, ma soprattutto a considerare l'uso della tecnologia come qualcosa di necessario in ogni occasione, in ogni luogo e la diffusione della miniaturizzazione dei dispositivi elettronici e delle tecnologie di comunicazione wireless ha contribuito notevolmente alla realizzazione di questo scenario. La possibilità di avere a disposizione nei luoghi più impensabili sistemi elettronici di piccole dimensioni e autoalimentati ha contribuito allo sviluppo di nuove applicazioni, tra le quali troviamo le WSN (Wireless Sensor Network), ovvero reti formate da dispositivi in grado di monitorare qualsiasi grandezza naturale misurabile e inviare i dati verso sistemi in grado di elaborare e immagazzinare le informazioni raccolte. La novità introdotta dalle reti WSN è rappresentata dalla possibilità di effettuare monitoraggi con continuità delle più diverse grandezze fisiche, il che ha consentito a questa nuova tecnologia l'accesso ad un mercato che prevede una vastità di scenari indefinita. Osservazioni estese sia nello spazio che nel tempo possono essere inoltre utili per poter ricavare informazioni sull'andamento di fenomeni naturali che, se monitorati saltuariamente, non fornirebbero alcuna informazione interessante. Tra i casi d'interesse più rilevanti si possono evidenziare: - segnalazione di emergenze (terremoti, inondazioni) - monitoraggio di parametri difficilmente accessibili all'uomo (frane, ghiacciai) - smart cities (analisi e controllo di illuminazione pubblica, traffico, inquinamento, contatori gas e luce) - monitoraggio di parametri utili al miglioramento di attività produttive (agricoltura intelligente, monitoraggio consumi) - sorveglianza (controllo accessi ad aree riservate, rilevamento della presenza dell'uomo) Il vantaggio rappresentato da un basso consumo energetico, e di conseguenza un tempo di vita della rete elevato, ha come controparte il non elevato range di copertura wireless, valutato nell'ordine delle decine di metri secondo lo standard IEEE 802.15.4. Il monitoraggio di un'area di grandi dimensioni richiede quindi la disposizione di nodi intermedi aventi le funzioni di un router, il cui compito sarà quello di inoltrare i dati ricevuti verso il coordinatore della rete. Il tempo di vita dei nodi intermedi è di notevole importanza perché, in caso di spegnimento, parte delle informazioni raccolte non raggiungerebbero il coordinatore e quindi non verrebbero immagazzinate e analizzate dall'uomo o dai sistemi di controllo. Lo scopo di questa trattazione è la creazione di un protocollo di comunicazione che preveda meccanismi di routing orientati alla ricerca del massimo tempo di vita della rete. Nel capitolo 1 vengono introdotte le WSN descrivendo caratteristiche generali, applicazioni, struttura della rete e architettura hardware richiesta. Nel capitolo 2 viene illustrato l'ambiente di sviluppo del progetto, analizzando le piattaforme hardware, firmware e software sulle quali ci appoggeremo per realizzare il progetto. Verranno descritti anche alcuni strumenti utili per effettuare la programmazione e il debug della rete. Nel capitolo 3 si descrivono i requisiti di progetto e si realizza una mappatura dell'architettura finale. Nel capitolo 4 si sviluppa il protocollo di routing, analizzando i consumi e motivando le scelte progettuali. Nel capitolo 5 vengono presentate le interfacce grafiche utilizzate utili per l'analisi dei dati. Nel capitolo 6 vengono esposti i risultati sperimentali dell'implementazione fissando come obiettivo il massimo lifetime della rete.