56 resultados para deep learning, convolutional neural network, computer aided detection, mammografie


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comfort level of the seat has a major effect on the usage of a vehicle; thus, car manufacturers have been working on elevating car seat comfort as much as possible. However, still, the testing and evaluation of comfort are done using exhaustive trial and error testing and evaluation of data. In this thesis, we resort to machine learning and Artificial Neural Networks (ANN) to develop a fully automated approach. Even though this approach has its advantages in minimizing time and using a large set of data, it takes away the degree of freedom of the engineer on making decisions. The focus of this study is on filling the gap in a two-step comfort level evaluation which used pressure mapping with body regions to evaluate the average pressure supported by specific body parts and the Self-Assessment Exam (SAE) questions on evaluation of the person’s interest. This study has created a machine learning algorithm that works on giving a degree of freedom to the engineer in making a decision when mapping pressure values with body regions using ANN. The mapping is done with 92% accuracy and with the help of a Graphical User Interface (GUI) that facilitates the process during the testing time of comfort level evaluation of the car seat, which decreases the duration of the test analysis from days to hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La segmentazione prevede la partizione di un'immagine in aree strutturalmente o semanticamente coerenti. Nell'imaging medico, è utilizzata per identificare, contornandole, Regioni di Interesse (ROI) clinico, quali lesioni tumorali, oggetto di approfondimento tramite analisi semiautomatiche e automatiche, o bersaglio di trattamenti localizzati. La segmentazione di lesioni tumorali, assistita o automatica, consiste nell’individuazione di pixel o voxel, in immagini o volumi, appartenenti al tumore. La tecnica assistita prevede che il medico disegni la ROI, mentre quella automatica è svolta da software addestrati, tra cui i sistemi Computer Aided Detection (CAD). Mediante tecniche di visione artificiale, dalle ROI si estraggono caratteristiche numeriche, feature, con valore diagnostico, predittivo, o prognostico. L’obiettivo di questa Tesi è progettare e sviluppare un software di segmentazione assistita che permetta al medico di disegnare in modo semplice ed efficace una o più ROI in maniera organizzata e strutturata per futura elaborazione ed analisi, nonché visualizzazione. Partendo da Aliza, applicativo open-source, visualizzatore di esami radiologici in formato DICOM, è stata estesa l’interfaccia grafica per gestire disegno, organizzazione e memorizzazione automatica delle ROI. Inoltre, è stata implementata una procedura automatica di elaborazione ed analisi di ROI disegnate su lesioni tumorali prostatiche, per predire, di ognuna, la probabilità di cancro clinicamente non-significativo e significativo (con prognosi peggiore). Per tale scopo, è stato addestrato un classificatore lineare basato su Support Vector Machine, su una popolazione di 89 pazienti con 117 lesioni (56 clinicamente significative), ottenendo, in test, accuratezza = 77%, sensibilità = 86% e specificità = 69%. Il sistema sviluppato assiste il radiologo, fornendo una seconda opinione, non vincolante, adiuvante nella definizione del quadro clinico e della prognosi, nonché delle scelte terapeutiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio dell’intelligenza artificiale si pone come obiettivo la risoluzione di una classe di problemi che richiedono processi cognitivi difficilmente codificabili in un algoritmo per essere risolti. Il riconoscimento visivo di forme e figure, l’interpretazione di suoni, i giochi a conoscenza incompleta, fanno capo alla capacità umana di interpretare input parziali come se fossero completi, e di agire di conseguenza. Nel primo capitolo della presente tesi sarà costruito un semplice formalismo matematico per descrivere l’atto di compiere scelte. Il processo di “apprendimento” verrà descritto in termini della massimizzazione di una funzione di prestazione su di uno spazio di parametri per un ansatz di una funzione da uno spazio vettoriale ad un insieme finito e discreto di scelte, tramite un set di addestramento che descrive degli esempi di scelte corrette da riprodurre. Saranno analizzate, alla luce di questo formalismo, alcune delle più diffuse tecniche di artificial intelligence, e saranno evidenziate alcune problematiche derivanti dall’uso di queste tecniche. Nel secondo capitolo lo stesso formalismo verrà applicato ad una ridefinizione meno intuitiva ma più funzionale di funzione di prestazione che permetterà, per un ansatz lineare, la formulazione esplicita di un set di equazioni nelle componenti del vettore nello spazio dei parametri che individua il massimo assoluto della funzione di prestazione. La soluzione di questo set di equazioni sarà trattata grazie al teorema delle contrazioni. Una naturale generalizzazione polinomiale verrà inoltre mostrata. Nel terzo capitolo verranno studiati più nel dettaglio alcuni esempi a cui quanto ricavato nel secondo capitolo può essere applicato. Verrà introdotto il concetto di grado intrinseco di un problema. Verranno inoltre discusse alcuni accorgimenti prestazionali, quali l’eliminazione degli zeri, la precomputazione analitica, il fingerprinting e il riordino delle componenti per lo sviluppo parziale di prodotti scalari ad alta dimensionalità. Verranno infine introdotti i problemi a scelta unica, ossia quella classe di problemi per cui è possibile disporre di un set di addestramento solo per una scelta. Nel quarto capitolo verrà discusso più in dettaglio un esempio di applicazione nel campo della diagnostica medica per immagini, in particolare verrà trattato il problema della computer aided detection per il rilevamento di microcalcificazioni nelle mammografie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depth estimation from images has long been regarded as a preferable alternative compared to expensive and intrusive active sensors, such as LiDAR and ToF. The topic has attracted the attention of an increasingly wide audience thanks to the great amount of application domains, such as autonomous driving, robotic navigation and 3D reconstruction. Among the various techniques employed for depth estimation, stereo matching is one of the most widespread, owing to its robustness, speed and simplicity in setup. Recent developments has been aided by the abundance of annotated stereo images, which granted to deep learning the opportunity to thrive in a research area where deep networks can reach state-of-the-art sub-pixel precision in most cases. Despite the recent findings, stereo matching still begets many open challenges, two among them being finding pixel correspondences in presence of objects that exhibits a non-Lambertian behaviour and processing high-resolution images. Recently, a novel dataset named Booster, which contains high-resolution stereo pairs featuring a large collection of labeled non-Lambertian objects, has been released. The work shown that training state-of-the-art deep neural network on such data improves the generalization capabilities of these networks also in presence of non-Lambertian surfaces. Regardless being a further step to tackle the aforementioned challenge, Booster includes a rather small number of annotated images, and thus cannot satisfy the intensive training requirements of deep learning. This thesis work aims to investigate novel view synthesis techniques to augment the Booster dataset, with ultimate goal of improving stereo matching reliability in presence of high-resolution images that displays non-Lambertian surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural scene representation and neural rendering are new computer vision techniques that enable the reconstruction and implicit representation of real 3D scenes from a set of 2D captured images, by fitting a deep neural network. The trained network can then be used to render novel views of the scene. A recent work in this field, Neural Radiance Fields (NeRF), presented a state-of-the-art approach, which uses a simple Multilayer Perceptron (MLP) to generate photo-realistic RGB images of a scene from arbitrary viewpoints. However, NeRF does not model any light interaction with the fitted scene; therefore, despite producing compelling results for the view synthesis task, it does not provide a solution for relighting. In this work, we propose a new architecture to enable relighting capabilities in NeRF-based representations and we introduce a new real-world dataset to train and evaluate such a model. Our method demonstrates the ability to perform realistic rendering of novel views under arbitrary lighting conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, we have witnessed great changes in the industrial environment as a result of the innovations introduced by Industry 4.0, especially in the integration of Internet of Things, Automation and Robotics in the manufacturing field. The project presented in this thesis lies within this innovation context and describes the implementation of an Image Recognition application focused on the automotive field. The project aims at helping the supply chain operator to perform an effective and efficient check of the homologation tags present on vehicles. The user contribution consists in taking a picture of the tag and the application will automatically, exploiting Amazon Web Services, return the result of the control about the correctness of the tag, the correct positioning within the vehicle and the presence of faults or defects on the tag. To implement this application we ombined two IoT platforms widely used in industrial field: Amazon Web Services(AWS) and ThingWorx. AWS exploits Convolutional Neural Networks to perform Text Detection and Image Recognition, while PTC ThingWorx manages the user interface and the data manipulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si ispira a lavori precedentemente portati avanti da altri studenti e si pone il problema della possibilit\`a di riconoscere se uno smartphone \`e utilizzato da un utente mentre esso si trova alla guida di un'autovettura. In essa verranno presentati vari metodi per risolvere questo problema di Machine Learning, ovvero realizzazione di dataset per l'allenamento di modelli e creazione e allenamento di modelli stessi, dediti al riconoscimento di un problema di classificazione binaria e riconoscimento di oggetti tramite Object Detection. Il cercare di riconoscere se l'utente \`e alla guida o meno, avverr\`a tramite l'output della fotocamera frontale dello smartphone, quindi lavoreremo su immagini, video e frame. Arriveremo a riconoscere la posizione della persona rappresentata da questi fotogrammi tramite un modello di Object Detection, che riconosce cintura e finestrino e determina se sono appartenenti al sedile e alla posizione del conducente o del passeggero. Vedremo alla fine, attraverso un'attenta analisi dei risultati ottenuti su ben 8 video diversi che saranno divisi in molti frame, che si ottengono risultati molto interessanti, dai quali si pu\`o prendere spunto per la creazione di un importante sistema di sicurezza alla guida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.