106 resultados para aritmetica di Peano teorema di Goodstein
Resumo:
Il tema centrale di questa Tesi è il cosiddetto "Teorema di Rappresentazione di Riesz" per i funzionali positivi su alcuni spazi di funzione continue. Questo Teorema, caposaldo dell'Analisi Funzionale, è inscindibilmente legato alla Teoria della Misura. Esso, infatti, stabilisce un'importante legame tra funzionali lineari positivi e misure positive di Radon. Dopo un'ampia disamina di questo Teorema, la Tesi si concentra su alcune delle sue Applicazioni in Analisi Reale e in Teoria del Potenziale. Nello specifico, viene provato un notevole risultato di Analisi Reale: la differenziabilità quasi dappertutto delle funzioni monotone su un intervallo reale. Nella dimostrazione di questo fatto, risulta cruciale anche un interessantissimo argomento di "continuità dalla positività", attraverso cui passiamo varie volte nella Tesi. Infatti, esso è determinante anche nelle Applicazioni in Teoria del Potenziale per la costruzione della misura armonica di un aperto regolare e della cosiddetta "misura di Riesz di una funzione subarmonica".
Resumo:
L'argomento della Tesi è lo studio delle serie trigonometriche e di Fourier: in particolare, il problema dello sviluppo in serie trigonometrica di una data funzione 2π-periodica e l'unicità di tale sviluppo, che si deduce dal Teorema di Lebesgue e Du Bois-Reymond. Nel Capitolo 1 sono stati richiamati alcune definizioni e risultati di base della teoria delle serie trigonometriche e di Fourier. Il Capitolo 2 è dedicato alla teoria della derivata seconda di Schwarz (una generalizzazione della derivata seconda classica) e delle cosidette funzioni 1/2-convesse: il culmine di questo capitolo è rappresentato dal Teorema di De la Vallée-Poussin, che viene applicato crucialmente nella prova del teorema centrale della tesi. Nel Capitolo 3 si torna alla teoria delle serie trigonometriche, applicando i risultati principali della teoria della derivata seconda di Schwarz e delle funzioni 1/2-convesse, visti nel capitolo precedente, per definire il concetto di funzione di Riemann e di somma nel senso di Riemann di una serie trigonometrica e vederne le principali proprietà. Conclude il Capitolo 3 la prova del Teorema di Lebesgue e Du Bois-Reymond, in cui vengono usate tutte le nozioni e i risultati del terzo capitolo e il Teorema di De la Vallée-Poussin. Infine, il Capitolo 4 è dedicato alle applicazione del Teorema di Lebesgue e Du Bois-Reymond. In una prima sezione del Capitolo 4 vi sono alcuni casi particolari del Teorema di Lebesgue e Du Bois-Reymond e in particolare viene dimostrata l'unicità dello sviluppo in serie trigonometrica per una funzione 2π-periodica e a valori finiti. Conclude la Tesi un'altra applicazione del Teorema di Lebesgue e Du Bois-Reymond: la prova dell'esistenza di funzioni continue e 2π-periodiche che non sono la somma puntuale di nessuna serie trigonometrica, con un notevole esempio di Lebesgue.
Resumo:
Questa tesi riguarda il Teorema di Morse-Sard nella sua versione generale. Tale teorema afferma che l'immagine dei punti critici di una funzione di classe C^k da un aperto di R^m a R^n è un insieme di misura di Lebesgue nulla se k >= m-n+1 (se m >= n) o se k >= 1 (se m
Resumo:
Nella presente tesi si studia il teorema di Jordan e se ne analizzano le sue applicazioni. La trattazione è suddivisa in tre capitoli e un'appendice di approfondimento sulla funzione di Vitali. Nel primo capitolo, inizialmente, vengono introdotte le funzioni a variazione totale limitata, provando anche una loro caratterizzazione. Poi sono definite le serie di Fourier e si pone attenzione al lemma di Riemann-Lebesgue e al teorema di localizzazione di Riemann. Infine sono enunciati alcuni criteri di convergenza puntale e uniforme. Nel secondo capitolo, viene enunciato e dimostrato il teorema di Jordan. Verrà introdotto, inizialmente, una generalizzazione del teorema della media integrale, necessario per la prova del teorema di Jordan. Il terzo capitolo è dedicato alle applicazione del teorema di Jordan. Infatti si dimostra che ogni serie di Fourier può essere integrata termine a termine su ogni intervallo compatto. Di tale applicazione se ne darà anche una formulazione duale. Infine, nell'appendice, viene costruita la funzione di Vitali e ne sono riportate alcune delle sue proprietà.
Resumo:
In questa tesi verrà enunciato e dimostrato un notevole teorema chiamato identità di Pohozaev, che riguarda le soluzioni di particolari problemi di Dirichlet per il Laplaciano. Questo risultato sarà ottenuto come corollario del classico teorema della divergenza. Dopo alcune nozioni preliminari, si enuncia il teorema della divergenza. Infine, dopo una breve introduzione riguardo le equazioni alle derivate parziali del 2° ordine e problemi di Dirichlet per il Laplaciano, viene enunciata e dimostrata l'identità di Pohozaev. Seguono alcuni corollari, dei quali uno riguarda la non esistenza di soluzioni per un particolare problema di Dirichlet.
Resumo:
Lo scopo della tesi è dimostrare il teorema di Arnold-Liouville, il quale afferma che dato un sistema a n gradi di libertà, con n integrali primi del moto in involuzione, esiste una trasformazione canonica di variabili azione-angolo, attraverso la quale si può riscrivere il sistema in uno ad esso equivalente, ma dipendente solo dalle azioni. Per arrivare a questo risultato nel primo capitolo viene richiamata la nozione di sistema hamiltoniano, di flusso del sistema e delle sue proprietà, viene infine introdotta una operazione binaria tra funzioni, la parentesi di Poisson, evidenziando il suo legame con il formalismo hamiltoniano. Nel secondo capitolo si definisce inizialmente cos'è una trasformazione canonica di variabili, dimostrando poi alcuni criteri per la canonicità di queste, mediante la verifica di determinate condizione necessarie e sufficienti, con opportuni esempi di trasformazioni canoniche e non. Nel terzo capitolo si definisce cos'è un sistema hamiltoniano integrabile, facendone successivamente un esempio a un grado di libertà con il pendolo. Il procedimento svolto in questo esempio si vorrà poi estendere a un generico sistema a n gradi di libertà, dunque verrà enunciato e dimostrato il teorema di Arnold-Liouvill, il quale, sotto opportune ipotesi, permette di risolvere questo problema.
Resumo:
Il teorema della funzione implicita, valido nel caso di varietà differenziabili, non risulta vero se si prendono in analisi varietà algebriche affini con la topologia di Zariski. Dopo aver introdotto le nozioni di morfismo piatto e di morfismo non ramificato, si arriva ai morfismi étale, definiti proprio come quei morfismi che sono piatti e non ramificati; nella seconda parte si considerano i morfismi di varietà non singolari dimostrando che la classe dei morfismi étale coincide esattamente con quei morfismi che inducono isomorfismi sugli spazi tangenti. Si approfondisce poi la nozione di morfismo étale da un punto di vista algebrico e infine la nozione di intorno étale di un punto, che si basa su quella di morfismo étale.
Resumo:
La tesi tratta dei gruppi semplici sporadici, in particolar modo dei gruppi di Mathieu. Sono state ripercorse tappe storiche fondamentali, a partire dalla semplicità del gruppo alterno An, n>4, nota a Galois, fino a giungere al teorema di classificazione dei gruppi semplici, di cui i gruppi sporadici rappresentano un caso particolare. Vengono poi proposte diverse costruzioni dei gruppi di Mathieu, passando dall'algebra alla geometria fino alla teoria dell'informazione. Quindi vengono discusse le proprietà principali dei gruppi di Mathieu, e infine si presentano congetture in cui i gruppi di Mathieu, o più in generale i gruppi sporadici, giocano un ruolo fondamentale, come ad esempio nella congettura "moonshine". Al termine della tesi vengono presentati i gruppi di Mathieu in ambiti diversi dal mondo matematico, dal gioco alla musica.
Resumo:
Le più moderne e diffuse applicazioni wireless attuali sono dedicate a sistemi distribuiti in grandi quantità ed il più possibile miniaturizzati. In questa tesi si discute di tecniche di miniaturizzazione delle antenne di questi sistemi. Tradizionalmente tali tecniche si sono basate su substrati ad elevata costante dielettrica che hanno però, come contropartita, un deterioramento delle prestazioni radianti. Un'alternativa molto promettente è offerta da substrati magneto-dielettrici che, pur garantendo analoghe riduzioni degli ingombri, possono offrire migliori opportunità per il comportamento radiante e per l'adattamento dell'antenna al resto del sistema. In questa tesi, partendo dallo stato dell'arte della letteratura scientifica, si è sviluppato un modello che consente di valutare a priori i vantaggi/svantaggi di diverse topologie d'antenne basate su substrati magneto-dielettrici. Il metodo si basa sul teorema di equivalenza. Infine la tesi affronta il problema di sviluppare un metodo per la caratterizzazione dei parametri costitutivi di tali materiali.
Resumo:
The purpose of this dissertation is to prove that the Dirichlet problem in a bounded domain is uniquely solvable for elliptic equations in divergence form. The proof can be achieved by Hilbert space methods based on generalized or weak solutions. Existence and uniqueness of a generalized solution for the Dirichlet problem follow from the Fredholm alternative and weak maximum principle.
Resumo:
Le reti di oggetti intelligenti costituiscono una realtà che si sta affermando nel mondo quotidiano. Dispositivi capaci di comunicare tra loro, oltre che svolgere la propria funzione primaria, possono comporre una nuvola che faccia riferimento al legittimo proprietario. Un aspetto fondamentale di questo scenario riguarda la sicurezza, in particolar modo per garantire una comunicazione protetta. Il soddisfacimento di questo requisito è fondamentale anche per altri punti come l'integrità dell'informazione condivisa e l'autenticazione. Lo strumento più antico e tutt'ora adatto alla riservatezza di una comunicazione è costituito dalla crittografia. Una tecnica crittografica è schematicamente composta da un algoritmo che, a seconda di una chiave e del messaggio in ingresso, restituisce in uscita un messaggio cifrato, il crittogramma. Questo viene poi inviato e al legittimo destinatario che, essendo in possesso della chiave e dell'algoritmo, lo converte nel messaggio originale. L'obiettivo è rendere impossibile ad un utente malevolo - non dotato di chiave - la ricostruzione del messaggio. L'assunzione che l'algoritmo possa essere noto anche a terze parti concentra l'attenzione sul tema della chiave. La chiave deve essere sufficientemente lunga e casuale, ma soprattutto deve essere nota ai due utenti che intendono instaurare la comunicazione. Quest'ultimo problema, noto come distribuzione della chiave, è stato risolto con il sistema RSA a chiave pubblica. Il costo computazionale di questa tecnica, specialmente in un contesto di dispositivi non caratterizzati da grandi potenze di calcolo, suggerisce però la ricerca di strade alternative e meno onerose. Una soluzione promettente ed attualmente oggetto di studio sembra essere costituita dalle proprietà del canale wireless. Un ponte radio è caratterizzato da una funzione di trasferimento che dipende dall'ambiente in cui ci si trova e, per il teorema di reciprocità, risulta essere lo stesso per i due utenti che l'hanno instaurato. Oggetto della tesi è lo studio ed il confronto di alcune delle tecniche possibili per estrarre una chiave segreta da un mezzo condiviso, come quello del canale wireless. Si presenterà il contesto in cui verrà sviluppato l'elaborato. Si affronteranno in particolare due casi di interesse, costituiti dalla attuale tecnologia di propagazione del segnale a banda stretta (impiegata per la maggior parte delle trasmissioni senza fili) per passare a quella relativamente più recente della banda Ultra-larga (UWB). Verranno poi illustrate delle tecniche per ottenere stringhe di bit dai segnali acquisiti, e saranno proposti dei metodi per la loro correzione da eventuali discordanze. Saranno infine riportate le conclusioni sul lavoro svolto e le possibili strade future.
Resumo:
Scopo della tesi è di estendere un celebre teorema di Montel, sulle famiglie normali di funzioni olomorfe, all'ambiente sub-ellittico delle famiglie di soluzioni u dell'equazione Lu=0, dove L appartiene ad un'ampia classe di operatori differenziali alle derivate parziali reali del secondo ordine in forma di divergenza, comprendente i sub-Laplaciani sui gruppi di Carnot, i Laplaciani sub-ellittici su arbitrari gruppi di Lie, oltre all'operatore di Laplace-Beltrami su varietà di Riemann. A questo scopo, forniremo una versione sub-ellittica di un altro notevole risultato, dovuto a Koebe, che caratterizza le funzioni armoniche come punti fissi di opportuni operatori integrali di media con nuclei non banali. Sarà fornito anche un adeguato sostituto della formula integrale di Cauchy.
Resumo:
E stata risolta l'equazione d'onda per la radiazione elettromagnetica ed è stata trovata l'espressione (in forma di integrale) per un impulso monocromatico di frequenza angolare fissata e per un impulso di durata finita, imponendo che nello spazione dei vettori d'onda (k_x,k_y) l'impulso sia rappresentato da una funzione Gaussiana nella forma exp[-w_0^2(k_x^2+k_y^2)/4], dove w_0 rappresenta il waist trasverso. Per avere un'espressione analitica dell'impulso monocromatico e dell'impulso di durata finita si sono rese necessarie rispettivamente l'approssimazione parassiale e un'approssimazione di "fattorizzazione". Sono state analizzate, sia analiticamente sia numericamente, i limiti entro i quali queste approssimazioni possono essere considerate accurate. Le soluzioni esatte e le soluzioni approssimate sono state confrontate graficamente. Nel capitolo finale è stato analizzato il moto di una particella carica che interagisce con un pacchetto d'onda unidimensionale, mettendo in luce la fondamentale differenza tra il moto di questa particella nel vuoto e il moto della stessa in un plasma carico. Infatti, in accordo con il teorema di Lawson-Woodward, nel vuoto la particella non può essere accelerata per interazione diretta con il pacchetto d'onda, mentre nel plasma, a seguito del passaggio del pacchetto, la particella può aver acquistato energia.
Resumo:
Questo lavoro si pone come obiettivo l'approfondimento della natura e delle proprietà dei polinomi espressi mediante la base di Bernstein. Introdotti originariamente all'inizio del '900 per risolvere il problema di approssimare una funzione continua su un intervallo chiuso e limitato della retta reale (Teorema di Stone-Weierstrass), essi hanno riscosso grande successo solo a partire dagli anni '60 quando furono applicati alla computer-grafica per costruire le cosiddette curve di Bezier. Queste, ereditando le loro proprietà geometriche da quelle analitiche dei polinomi di Bernstein, risultano intuitive e facilmente modellabili da un software interattivo e sono alla base di tutti i più moderni disegni curvilinei: dal design industriale, ai sistemi CAD, dallo standard SVG alla rappresentazione di font di caratteri.
Resumo:
In questa tesi ci si occuperà di presentare alcuni aspetti salienti della teoria spettrale per gli operatori limitati negli spazi di Hilbert. Nel primo capitolo verranno presentate alcune nozioni fondamentali di analisi funzionale, necessarie per lo studio degli operatori. Il secondo capitolo si occupa invece di analizzare la teoria spettrale per operatori compatti. In particolare, verrà presentato il Teorema Spettrale per Operatori Normali Compatti e il Teorema dell'Alternativa di Fredholm. In seguito verrà applicata tale teoria alla risolubilità del problema di Dirichlet. Nel terzo capitolo verrà esteso quanto ottenuto per gli operatori compatti ad operatori limitati autoaggiunti e per gli operatori normali limitati, passando attraverso le famiglie spettrali.