415 resultados para Turboalbero MatLab Simulink modello dinamico mappe prestazionali turbina Allison


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il presente progetto ha riguardato lo studio e lo sviluppo di metodologie per la generazione automatica di calibrazioni di guidabilità motore cambio, dove con guidabilità si intende il legame intercorrente tra le richieste del conducente ed il reale comportamento del veicolo. La prima parte della tesi si è concentrata sullo studio delle calibrazioni motore e delle calibrazioni del cambio automatico attualmente sfruttate dai software di produzione, sviluppando un modello di simulazione in grado di verificare come queste calibrazioni influenzino il comportamento del veicolo, concentrandosi sugli andamenti delle accelerazioni e dei regimi motore risultanti. Dopo la validazione del modello, è stato creato uno strumento, in ambiente Matlab, che restituisce la calibrazione di guidabilità del cambio automatico, ovvero la mappa sfruttata dalla relativa centralina per gestire il cambio della marcia, ricevendo in ingresso le seguenti informazioni: le grandezze fisiche del veicolo nel suo complesso, quali la massa, i rapporti di trasmissione, il rapporto del differenziale, il raggio di rotolamento dinamico e tutte le inerzie dei componenti della driveline; le calibrazioni di guidabilità motore, costituite da otto mappe, una per ogni marcia, che definiscono la coppia motrice che si richiede al motore di erogare, in funzione della posizione del pedale acceleratore e del regime motore; il piano quotato del motore. Il codice, note queste informazioni, genera automaticamente la mappa di cambio marcia con le linee di Upshift (marcia innestata crescente) e Downshift (marcia innestata decrescente), in funzione della posizione del pedale e dei giri in uscita dal cambio. Infine, si è valutata una possibile strategia per la calibrazione delle otto mappe pedale con cui viene gestito il controllo motore. Si sono generate mappe a potenza costante in cui il pedale assume la funzione di regolatore di velocità.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L'attività di tesi svolta presso l'azienda VRM spa è stata focalizzata sullo studio e sull’implementazione di un sistema di controllo elettronico per le sospensioni di un motociclo. Con questo obiettivo, sono state affrontate le fasi di analisi del sistema sospensioni della moto Benelli 752S, della modellazione multibody del veicolo e della modellazione matematica delle strategie Anti-Dive e Anti-Squat. Tali strategie di controllo sono volte a limitare rispettivamente la velocità di affondamento della forcella, in fase di frenata, e lo squat della moto sulla ruota posteriore, in accelerazione. Le considerazioni teoriche, alla base di questo studio, sono state supportate da una serie di simulazioni effettuate mediante il software Simulink di Matlab, che ha consentito di rappresentare il comportamento dinamico del sistema. A completamento della ricerca sopra citata, sono state condotte attività sperimentali volte a riprodurre le condizioni in cui le strategie di controllo vengono messe in atto e a validare la risposta ottenuta dal modello Simulink nei medesimi scenari operativi. Queste verifiche hanno dimostrato l'adeguatezza delle variabili individuate come input del controllo e la corrispondenza tra il comportamento del veicolo nei test su strada e i risultati ottenuti dal modello.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nell’attuale contesto energetico di forte instabilità, prezzi e produttività subiscono continue variazioni a causa di fattori politici ed economici. Il sistema elettrico è chiamato a rispondere velocemente ai cambiamenti garantendo continuamente il soddisfacimento del fabbisogno di energia elettrica. Nel presente elaborato viene utilizzato un modello di costo dinamico, estratto dalla letteratura scientifica, con lo scopo di gestire efficientemente i flussi energetici e garantire una programmazione ottimale del mix produttivo. Viene analizzato lo scenario italiano mettendo in relazione produzione, trasmissione e domanda energetica. I dati utilizzati fanno riferimento, quanto più possibile, al contesto attuale. Coerentemente con la situazione reale i risultati ottenuti mettono in risalto le criticità e i punti di forza principali del sistema elettrico italiano delineando i possibili cambiamenti attuabili a medio termine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente tesi riguarda lo studio di procedimenti di ottimizzazione di sistemi smorzati. In particolare, i sistemi studiati sono strutture shear-type soggette ad azioni di tipo sismico impresse alla base. Per effettuare l’ottimizzazione dei sistemi in oggetto si agisce sulle rigidezze di piano e sui coefficienti di smorzamento effettuando una ridistribuzione delle quantità suddette nei piani della struttura. È interessante effettuare l’ottimizzazione di sistemi smorzati nell’ottica della progettazione antisismica, in modo da ridurre la deformata della struttura e, conseguentemente, anche le sollecitazioni che agiscono su di essa. Il lavoro consta di sei capitoli nei quali vengono affrontate tre procedure numerico-analitiche per effettuare l’ottimizzazione di sistemi shear-type. Nel primo capitolo si studia l’ottimizzazione di sistemi shear-type agendo su funzioni di trasferimento opportunamente vincolate. In particolare, le variabili di progetto sono le rigidezze di piano, mentre i coefficienti di smorzamento e le masse di piano risultano quantità note e costanti durante tutto il procedimento di calcolo iterativo; per effettuare il controllo dinamico della struttura si cerca di ottenere una deformata pressoché rettilinea. Tale condizione viene raggiunta ponendo le ampiezze delle funzioni di trasferimento degli spostamenti di interpiano pari all’ampiezza della funzione di trasferimento del primo piano. Al termine della procedura si ottiene una ridistribuzione della rigidezza complessiva nei vari piani della struttura. In particolare, si evince un aumento della rigidezza nei piani più bassi che risultano essere quelli più sollecitati da una azione impressa alla base e, conseguentemente, si assiste ad una progressiva riduzione della variabile di progetto nei piani più alti. L’applicazione numerica di tale procedura viene effettuata nel secondo capitolo mediante l’ausilio di un programma di calcolo in linguaggio Matlab. In particolare, si effettua lo studio di sistemi a tre e a cinque gradi di libertà. La seconda procedura numerico-analitica viene presentata nel terzo capitolo. Essa riguarda l’ottimizzazione di sistemi smorzati agendo simultaneamente sulla rigidezza e sullo smorzamento e consta di due fasi. La prima fase ricerca il progetto ottimale della struttura per uno specifico valore della rigidezza complessiva e dello smorzamento totale, mentre la seconda fase esamina una serie di progetti ottimali in funzione di diversi valori della rigidezza e dello smorzamento totale. Nella prima fase, per ottenere il controllo dinamico della struttura, viene minimizzata la somma degli scarti quadratici medi degli spostamenti di interpiano. Le variabili di progetto, aggiornate dopo ogni iterazione, sono le rigidezze di piano ed i coefficienti di smorzamento. Si pone, inoltre, un vincolo sulla quantità totale di rigidezza e di smorzamento, e i valori delle rigidezze e dei coefficienti di smorzamento di ogni piano non devono superare un limite superiore posto all’inizio della procedura. Anche in questo caso viene effettuata una ridistribuzione delle rigidezze e dei coefficienti di smorzamento nei vari piani della struttura fino ad ottenere la minimizzazione della funzione obiettivo. La prima fase riduce la deformata della struttura minimizzando la somma degli scarti quadrarici medi degli spostamenti di interpiano, ma comporta un aumento dello scarto quadratico medio dell’accelerazione assoluta dell’ultimo piano. Per mantenere quest’ultima quantità entro limiti accettabili, si passa alla seconda fase in cui si effettua una riduzione dell’accelerazione attraverso l’aumento della quantità totale di smorzamento. La procedura di ottimizzazione di sistemi smorzati agendo simultaneamente sulla rigidezza e sullo smorzamento viene applicata numericamente, mediante l’utilizzo di un programma di calcolo in linguaggio Matlab, nel capitolo quattro. La procedura viene applicata a sistemi a due e a cinque gradi di libertà. L’ultima parte della tesi ha come oggetto la generalizzazione della procedura che viene applicata per un sistema dotato di isolatori alla base. Tale parte della tesi è riportata nel quinto capitolo. Per isolamento sismico di un edificio (sistema di controllo passivo) si intende l’inserimento tra la struttura e le sue fondazioni di opportuni dispositivi molto flessibili orizzontalmente, anche se rigidi in direzione verticale. Tali dispositivi consentono di ridurre la trasmissione del moto del suolo alla struttura in elevazione disaccoppiando il moto della sovrastruttura da quello del terreno. L’inserimento degli isolatori consente di ottenere un aumento del periodo proprio di vibrare della struttura per allontanarlo dalla zona dello spettro di risposta con maggiori accelerazioni. La principale peculiarità dell’isolamento alla base è la possibilità di eliminare completamente, o quantomeno ridurre sensibilmente, i danni a tutte le parti strutturali e non strutturali degli edifici. Quest’ultimo aspetto è importantissimo per gli edifici che devono rimanere operativi dopo un violento terremoto, quali ospedali e i centri operativi per la gestione delle emergenze. Nelle strutture isolate si osserva una sostanziale riduzione degli spostamenti di interpiano e delle accelerazioni relative. La procedura di ottimizzazione viene modificata considerando l’introduzione di isolatori alla base di tipo LRB. Essi sono costituiti da strati in elastomero (aventi la funzione di dissipare, disaccoppiare il moto e mantenere spostamenti accettabili) alternati a lamine in acciaio (aventi la funzione di mantenere una buona resistenza allo schiacciamento) che ne rendono trascurabile la deformabilità in direzione verticale. Gli strati in elastomero manifestano una bassa rigidezza nei confronti degli spostamenti orizzontali. La procedura di ottimizzazione viene applicata ad un telaio shear-type ad N gradi di libertà con smorzatori viscosi aggiunti. Con l’introduzione dell’isolatore alla base si passa da un sistema ad N gradi di libertà ad un sistema a N+1 gradi di libertà, in quanto l’isolatore viene modellato alla stregua di un piano della struttura considerando una rigidezza e uno smorzamento equivalente dell’isolatore. Nel caso di sistema sheat-type isolato alla base, poiché l’isolatore agisce sia sugli spostamenti di interpiano, sia sulle accelerazioni trasmesse alla struttura, si considera una nuova funzione obiettivo che minimizza la somma incrementata degli scarti quadratici medi degli spostamenti di interpiano e delle accelerazioni. Le quantità di progetto sono i coefficienti di smorzamento e le rigidezze di piano della sovrastruttura. Al termine della procedura si otterrà una nuova ridistribuzione delle variabili di progetto nei piani della struttura. In tal caso, però, la sovrastruttura risulterà molto meno sollecitata in quanto tutte le deformazioni vengono assorbite dal sistema di isolamento. Infine, viene effettuato un controllo sull’entità dello spostamento alla base dell’isolatore perché potrebbe raggiungere valori troppo elevati. Infatti, la normativa indica come valore limite dello spostamento alla base 25cm; valori più elevati dello spostamento creano dei problemi soprattutto per la realizzazione di adeguati giunti sismici. La procedura di ottimizzazione di sistemi isolati alla base viene applicata numericamente mediante l’utilizzo di un programma di calcolo in linguaggio Matlab nel sesto capitolo. La procedura viene applicata a sistemi a tre e a cinque gradi di libertà. Inoltre si effettua il controllo degli spostamenti alla base sollecitando la struttura con il sisma di El Centro e il sisma di Northridge. I risultati hanno mostrato che la procedura di calcolo è efficace e inoltre gli spostamenti alla base sono contenuti entro il limite posto dalla normativa. Giova rilevare che il sistema di isolamento riduce sensibilmente le grandezze che interessano la sovrastruttura, la quale si comporta come un corpo rigido al di sopra dell’isolatore. In futuro si potrà studiare il comportamento di strutture isolate considerando diverse tipologie di isolatori alla base e non solo dispositivi elastomerici. Si potrà, inoltre, modellare l’isolatore alla base con un modello isteretico bilineare ed effettuare un confronto con i risultati già ottenuti per il modello lineare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Realizzazione di un'applicazione in codice MATLAB per la generazione semi-automatica di nuvole di punti da convertire in superfici di spalle formatrici

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Per eseguire dei test automatizzati su una moto posta su banco a rulli, è necessario un software che permetta di gestire determinati attuatori sulla moto, in modo da poter simulare le condizioni di guida desiderate. Nel modello preso in esame, sono stati utilizzati Simulink e NI VeriStand. Simulink è un ambiente grafico di simulazione e analisi di sistemi dinamici completamente integrato con Matlab, caratterizzato dalla tipica interfaccia a blocchi, che possono essere personalizzati o scelti dalla libreria. Ni VeriStand è invece un ambiente software che permette di elaborare modelli scritti in Simulink in real time. Il presente lavoro è stato incentrato proprio su quest’ultimo aspetto. Per prima cosa è stata esaminata a fondo la parte del modello in Simulink, dopo di che è stata valutata la possibilità di riscrivere alcune parti del modello con un’applicazione interna a Simulink (StateFlow), che si potrebbe prestare meglio a simulare la logica di controllo rispetto a com’è gestita attualmente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analisi strutturale dell’ala di un UAV (velivolo senza pilota a bordo), sviluppata usando varie metodologie: misurazioni sperimentali statiche e dinamiche, e simulazioni numeriche con l’utilizzo di programmi agli elementi finiti. L’analisi statica è stata a sua volta portata avanti seguendo due differenti metodi: la classica e diretta determinazione degli spostamenti mediante l’utilizzo di un catetometro e un metodo visivo, basato sull’elaborazione di immagini e sviluppato appositamente a tale scopo in ambiente Matlab. Oltre a ciò è stata svolta anche una analisi FEM volta a valutare l’errore che si ottiene affrontando il problema con uno studio numerico. Su tale modello FEM è stata svolta anche una analisi di tipo dinamico con lo scopo di confrontare tali dati con i dati derivanti da un test dinamico sperimentale per ottenere informazioni utili per una seguente possibile analisi aeroelastica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lo studio di tesi che segue analizza un problema di controllo ottimo che ho sviluppato con la collaborazione dell'Ing. Stefano Varisco e della Dott.ssa Francesca Mincigrucci, presso la Ferrari Spa di Maranello. Si è trattato quindi di analizzare i dati di un controllo H-infinito; per eseguire ciò ho utilizzato i programmi di simulazione numerica Matlab e Simulink. Nel primo capitolo è presente la teoria dei sistemi di equazioni differenziali in forma di stato e ho analizzato le loro proprietà. Nel secondo capitolo, invece, ho introdotto la teoria del controllo automatico e in particolare il controllo ottimo. Nel terzo capitolo ho analizzato nello specifico il controllo che ho utilizzato per affrontare il problema richiesto che è il controllo H-infinito. Infine, nel quarto e ultimo capitolo ho specificato il modello che ho utilizzato e ho riportato l'implementazione numerica dell'algoritmo di controllo, e l'analisi dei dati di tale controllo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modellazione di un impianto fotovoltaico connesso alla rete. Simulazione con software Simulink del funzionamento dell'intero sistema fotovoltaico e confronto delle prestazioni legate all'utilizzo degli algoritmi MPPT più comuni, quali Hill Climbing e Incremental Conductance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’obiettivo di tesi consiste nel valutare il funzionamento di regolatori ripetitivi per il controllo di un inverter utilizzato come filtro attivo al fine di eliminare le armoniche di corrente prodotte da un carico distorcente trifase connesso in rete. È descritto lo schema di simulazione realizzato in ambiente Simulink di Matlab per poter individuare una possibile implementazione del controllo. È descritta l’attività di prototipazione rapida svolta mediante il sistema dSPACE per poter verificare sperimentalmente il funzionamento del controllo con regolatore ripetitivo su un modello di impianto reale costituito da inverter, carico distorcente e rete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riguarda la realizzazione di un modello per l'analisi prestazionale di un casello autostradale, in grado di valutare performance e livello di qualità erogato all'utenza in relazione al rapporto esistente tra domanda e offerta di servizio. Trattandosi di un varco autostradale si tratterà di analizzare un problema relativo ad un certo numero di veicoli in attesa di ricevere un servizio caratterizzato da tempi e modalità diverse a seconda della tipologia veicolare e della tipologia di esazione utilizzata. Il problema viene affrontato tramite la teoria delle code che permette la valutazione dei relativi parametri prestazionali. Partendo dallo studio dei casi più semplici di coda M/M/1 vengono fatte valutazioni sui tempi di servizio arrivando a identificare il modello M/G/1 come più appropriato per un tale problema. Viene poi illustrata l'impostazione del modello con input e output relativi. Il modello viene infine applicato a una stazione reale della rete per evidenziare le valutazioni che è possibile ottenere da un modello così realizzato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questa tesi si pone l'obiettivo di applicare un metodo lineare per l'inversione delle curve di dispersione delle onde superficiali di Rayleigh da rumore sismico, al fine di descrivere con maggior definizione la struttura della crosta terrestre in corrispondenza dell'Italia settentrionale e confrontarlo con il modello di riferimento. Si è fatto uso del processo di cross-correlazione applicato al rumore sismico per ricostruire la Funzione di Green per ogni coppia di stazioni. Sono state considerate circa 100 stazioni, tutte nel Nord-Italia. I segnali ottenuti sono costituiti principalmente da onde di superficie, in particolare onde di Rayleigh, le quali dominano i segnali in ampiezza. Per periodi compresi tra 1s e 50s, per ogni raggio tra coppie di stazioni, è stata misurata la velcoità di gruppo tramite l'utilizzo del software EGFAnalysisTimeFreq per Matlab. Le curve di dispersione così ottenute sono state utilizzate come dato per la risoluzione del problema inverso, al fine di ottenere mappe2D della velocità di gruppo che è fortemente dipendente dalle caratteristiche del mezzo. Infine queste ultime sono state confrontate con mappe di un modello esistente per la regione (Molinari et al. [22]).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sviluppo di un modello di ottimizzazione per lo scheduling dei veicoli elettrici in car sharing dell'Università di Bologna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progetto di un sistema di controllo della pressione dellʼaria compressa in un serbatoio. In particolare, dopo aver introdotto gli impianti ad aria compressa e mostrato i vari parametri di tali impianti, si vedrà̀ un modo di progettare un sistema di controllo che permetta di inviare allʼutenza una portata di aria che consenta di mantenere costante la pressione nel serbatoio di accumulo, dal quale lʼutenza preleva la portata. Il sistema permetterà di variare allʼoccorrenza lo spazio nocivo (o volume nocivo) del compressore volumetrico dellʼimpianto, in base a quanto volume dʼaria viene richiesto ad ogni ciclo di mandata dallʼutenza (volume dʼaria per ciclo o portata dʼaria); in generale i compressori di questo tipo di impianti possono essere o volumetrici o rotativi, ma in questo lavoro di tesi ci si concentrerà su compressori volumetrici. Il sistema servirà a fare in modo di mantenere la pressione nel serbatoio costante, per evitare dannose sovrappressioni al suo interno (o al contrario pressioni troppo basse), che con lʼausilio di pressostati inducono lo spegnimento del compressore (pressioni troppo basse al contrario ne inducono lʼaccensione se spento), con successivo riavviamento. Quindi il sistema aiuterà a limitare il più possibile il numero di avviamenti, riducendo il consumo energetico dovuto alle correnti di spunto ed evitando di danneggiare il compressore. Per verificare il corretto funzionamento del sistema si utilizzerà un modello simulato del sistema di controllo della pressione nel serbatoio realizzato in ambiente software Simulink. Verrà infine anche quantificato il risparmio economico che si ottiene con lʼintroduzione del sistema.