47 resultados para Blended studio learning environments
Resumo:
Questo lavoro di tesi riguarda lo studio e l’implementazione di un algoritmo di multiple kernel learning (MKL) per la classificazione e la regressione di dati di neuroimaging ed, in particolare, di grafi di connettività funzionale. Gli algoritmi di MKL impiegano una somma pesata di vari kernel (ovvero misure di similarità) e permettono di selezionare le features utili alla discriminazione delle istanze durante l’addestramento del classificatore/regressore stesso. L’aspetto innovativo introdotto in questa tesi è stato lo studio di un nuovo kernel tra grafi di connettività funzionale, con la particolare caratteristica di conservare l’informazione relativa all’importanza di ogni singola region of interest (ROI) ed impiegando la norma lp come metodo per l’aggiornamento dei pesi, al fine di ottenere soluzioni sparsificate. L’algoritmo è stato validato utilizzando mappe di connettività sintetiche ed è stato applicato ad un dataset formato da 32 pazienti affetti da deterioramento cognitivo lieve e malattia dei piccoli vasi, di cui 16 sottoposti a riabilitazione cognitiva tra un’esame di risonanza ma- gnetica funzionale di baseline e uno di follow-up. Le mappe di con- nettività sono state ottenute con il toolbox CONN. Il classificatore è riuscito a discriminare i due gruppi di pazienti in una configurazione leave-one-out annidata con un’accuratezza dell’87.5%. Questo lavoro di tesi è stato svolto durante un periodo di ricerca presso la School of Computer Science and Electronic Engineering dell’University of Essex (Colchester, UK).
Resumo:
This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.