131 resultados para Teorema-H deBoltzmann


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopo aver introdotto alcune nozioni della teoria della probabilità, ho esposto il teorema di Chebyshev ed alcuni teoremi ad esso collegati. Ho infine analizzato un'applicazione legata alle strategie d'investimento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’obiettivo di questa tesi è quello di presentare, in maniera elementare ma esaustiva, una delle teorie più interessanti nell’ambito dell’analisi matematica: le equazioni differenziali, equazioni che legano una funzione (vista come incognita) alle sue derivate. Nel presentare la teoria delle equazioni differenziali, l’esposizione viene suddivisa in tre capitoli. Il primo ha il fine di presentare la teoria, introducendo le definizioni e i principali risultati, con particolare attenzione al problema di Cauchy, mentre nel secondo l’attenzione si focalizza su come le soluzioni di un sistema differenziale dipendano dai dati iniziali. Nel terzo capitolo la teoria viene generalizzata attraverso il Teorema di Frobenius. Infatti, così come la soluzione di un’equazione differenziale ordinaria permette di ricostruire una curva passante per un dato punto a partire dal suo campo di tangenti, analogamente il Teorema di Frobenius permette di ricostruire una sottovarietà liscia a partire da un sistema di spazi vettoriali tangenti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si vede una dimostrazione elementare del teorema dei numeri primi. Dopo aver definito le funzioni aritmetiche di Tchebychev theta e psi, si utilizzano le loro proprietà per studiare il comportamento asintotico della funzione di Mertens e infine di pi(x). Inoltre si mostrano alcuni legami tra la zeta di Riemann e la teoria dei numeri e cenni ad altre dimostrazioni del teorema dei numeri primi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella tesi vengono introdotte le varietà differenziabili per poter trattare un problema di immergibilità di varietà differenziabili. Viene data una dimostrazione di un teorema di Whitney nel caso di varietà differenziabili compatte. Il teorema stabilisce che per una varietà compatta di dimensione n esiste un embedding nello spazio euclideo di dimensione 2n+1. Whitney stesso ha migliorato questo risultato, dimostrando che una varietà differenziabile può essere immersa tramite un embedding nello spazio euclideo di dimensione 2n. Nella tesi vengono dati alcuni esempi di questo miglioramento del teorema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il teorema del viriale consiste in una relazione tra energia cinetica e energia potenziale totali di un sistema all'equilibrio. Il concetto di Viriale (dal latino vires, plurale di vis, 'forza') è stato introdotto dal fisico e matematico tedesco Rudolf Julius Emanuel Clausius (1822-1888) per indicare la quantità N
Fi •xi i=1 che rappresenta la somma, fatta su tutte le N particelle di un sistema, dei prodotti scalari del vettore forza totale agente su ciascuna particella per il vettore posizione della particella stessa, rispetto ad un riferimento inerziale scelto. Tale quantità altro non è che un'energia potenziale. Dire che un sistema di particelle è virializzato equivale a dire che esso è stazionario, cioè all'equilibrio. In questo elaborato sono di nostro interesse sistemi astrofisici gravitazionali, in cui cioè l'energia potenziale sia dovuta solo a campi gravitazionali. Distingueremo innanzitutto sistemi collisionali e non collisionali, introducendo i tempi scala di attraversamento e di rilassamento. Dopo una trattazione teorica del teorema, nell'approssimazione di continuità - per cui sostuiremo alle sommatorie gli integrali - e di non collisionalità, an- dremo a studiarne l'importanza in alcuni sistemi astrofisici: applicazione agli ammassi stellari, alle galassie e agli ammassi di galassie, stima della quantità di materia oscura nei sistemi, instabilità di Jeans in nubi molecolari, rotazione delle galassie ellittiche. Per ragioni di spazio non saranno affrontati altri casi, di cui ne citiamo alcuni: collasso delle stelle, stima della massa dei buchi neri al centro delle galassie, 'mass-to-light ratio' di sistemi sferici. Parleremo in generale di “particelle” costituenti i sistemi per intendere stelle, galassie, particelle di gas a seconda del sistema in esame. Trascureremo in ogni caso le influenze gravitazionali di distribuzioni di densità esterne al sistema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo di questa tesi è analizzare il teorema del punto fisso di Brouwer, e lo faremo da più punti di vista, generalizzandolo e dando una piccola illustrazione di una sua possibile applicazione nella teoria dei giochi. Il teorema del punto fisso è uno dei teoremi prìncipi della topologia algebrica. Nella versione classica esso afferma che qualsiasi funzione continua che porta la palla unitaria di \R^{n} in se stessa possiede un punto fisso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo elaborato si presenta il teorema del viriale, introdotto per la prima volta da R. J. E. Clausius nel 1870. É una relazione fra energia cinetica e poteziale totali di un sistema che, se soddisfatta, implica che questo sia in equilibrio. Sono equivalenti le affermazioni: "sistema virializzato" e "sistema in equilibrio". Sebbene in ordine cronologico la prima formulazione del teorema sia stata quella in forma scalare, ricaveremo, per maggiore generalità, la forma tensoriale, dalla quale estrarremo quella scalare come caso particolare. Sono di nostro interesse i sistemi astrofisici dinamici autogravitanti costituiti da N particelle (intese come stelle, gas etc.), perciò la trattazione teorica è dedotta per tali configurazioni. In seguito ci concentreremo su alcune applicazioni astrofisiche. In primo luogo analizzeremo sistemi autogravitanti, per cui l'unica energia potenziale in gioco è quella dovuta a campi gravitazionali. Sarà quindi ricavato il limite di Jeans per l'instabilità gravitazionale, con conseguente descrizione del processo di formazione stellare, la stima della quantità di materia oscura in questi sistemi e il motivo dello schiacciamento delle galassie ellittiche. Successivamente introdurremo nell'energia potenziale un termine dovuto al campo magnetico, seguendo il lavoro di Fermi e Chandrasekhar, andando a vedere come si modifica il teorema e quali sono le implicazioni nella stabilità delle strutture stellari. Per motivi di spazio, queste trattazioni saranno presentate in termini generali e con approssimazioni, non potendo approfondire casi più specifici.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi è trattato il tema della soddisfacibilità booleana o proposizionale, detta anche SAT, ovvero il problema di determinare se una formula booleana è soddisfacibile o meno. Soddisfacibile significa che è possibile assegnare le variabili in modo che la formula assuma il valore di verità vero; viceversa si dice insoddisfacibile se tale assegnamento non esiste e se quindi la formula esprime una funzione identicamente falsa. A tal fine si introducono degli strumenti preliminari che permetteranno di affrontare più approfonditamente la questione, partendo dalla definizione basilare di macchina di Turing, affrontando poi le classi di complessità e la riduzione, la nozione di NP-completezza e si dimostra poi che SAT è un problema NP-completo. Infine è fornita una definizione generale di SAT-solver e si discutono due dei principali algoritmi utilizzati a tale scopo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una curva di Jordan è una curva continua nel piano, semplice e chiusa. Lo scopo della tesi è presentare tre teoremi riguardanti le curve di Jordan. Il teorema dei quattro vertici afferma che ogni curva di Jordan regolare di classe C^2 ha almeno quattro punti in cui la curvatura orientata ha un massimo o un minimo locali. Il teorema della curva di Jordan asserisce che una curva di Jordan divide il piano esattamente in due parti, l'interno e l'esterno della curva. Secondo il teorema di Schönflies, la chiusura dell'interno di una curva di Jordan è omeomorfa a un disco chiuso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si dimostra il teorema di inversione di Lévy, risultato che permette di ricostruire, a partire dalla funzione caratteristica di una variabile aleatoria assolutamente continua, la sua densità. Come conseguenza si dimostra che la funzione caratteristica di una variabile aleatoria ne caratterizza univocamente la distribuzione. Viene inoltre presentata una applicazione della formula di inversione per la valutazione di opzioni in finanza con esempi numerici basati sul modello Merton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La statistica è un ramo della matematica che studia i metodi per raccogliere, organizzare e analizzare un insieme di dati numerici, la cui variazione è influenzata da cause diverse, con lo scopo sia di descrivere le caratteristiche del fenomeno a cui i dati si riferiscono, sia di dedurre, ove possibile, le leggi generali che lo regolano. La statistica si suddivide in statistica descrittiva o deduttiva e in statistica induttiva o inferenza statistica. Noi ci occuperemo di approfondire la seconda, nella quale si studiano le condizioni per cui le conclusioni dedotte dall'analisi statistica di un campione sono valide in casi più generali. In particolare l'inferenza statistica si pone l'obiettivo di indurre o inferire le proprietà di una popolazione (parametri) sulla base dei dati conosciuti relativi ad un campione. Lo scopo principale di questa tesi è analizzare il Teorema di Cochran e illustrarne le possibili applicazioni nei problemi di stima in un campione Gaussiano. In particolare il Teorema di Cochran riguarda un'importante proprietà delle distribuzioni normali multivariate, che risulta fondamentale nella determinazione di intervalli di fiducia per i parametri incogniti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seguendo l'approccio di M. Hairer si dà una dimostrazione della versione probabilistica del Teorema di ipoellitticità di Hormander che utilizza un calcolo di Malliavin "ridotto".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo spazio duale V* di un K-spazio vettoriale V, con K = R, o C, è definito come l'insieme dei funzionali lineari e continui da V in K. Definendo su di esso le operazioni di somma tra funzionali lineari e di prodotto per scalare, V* acquisisce una struttura di K-spazio vettoriale che risulta molto utile. Infatti il suo studio permette di comprendere meglio le caratteristiche dello spazio V. A tal proposito interviene l'argomento che è oggetto dell'elaborato: il Teorema di Rappresentazione di Riesz. Diversi risultati sono raggruppati sotto questo nome, che deriva dal matematico ungherese Frigyes Riesz, e tutti permettono di caratterizzare chiaramente gli elementi del duale dello spazio a cui si riferiscono. Scopo della tesi è quello di presentare il teorema nelle sue varie forme a partire da una delle più elementari: quella relativa a spazi vettoriali finiti. Ripercorrendo via via le sue generalizzazioni si arriverà all'enunciato inerente allo spazio delle funzioni continue f da X in C che si annullano all'infinito, dove X è uno spazio di Hausdorff localmente compatto. Si vedrà inoltre un esempio di applicazione del teorema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente elaborato vuole illustrare alcuni risultati matematici di teoria della misura grazie ai quali si sono sviluppate interessanti conseguenze nel campo della statistica inferenziale relativamente al concetto di statistica sufficiente. Il primo capitolo riprende alcune nozioni preliminari e si espone il teorema di Radon-Nikodym, sulle misure assolutamente continue, con conseguente dimostrazione. Il secondo capitolo dal titolo ‘Applicazioni alla statistica sufficiente’ si apre con le definizioni degli oggetti di studio e con la presentazione di alcune loro proprietà matematiche. Nel secondo paragrafo si espongono i concetti di attesa condizionata e probabilità condizionata in relazione agli elementi definiti nel paragrafo iniziale. Si entra nel corpo di questo capitolo con il terzo paragrafo nel quale definiamo gli insiemi di misura, gli insiemi di misura dominati e il concetto di statistica sufficiente. Viene qua presentato un importante teorema di caratterizzazione delle statistiche sufficienti per insiemi dominati e un suo corollario che descrive la relativa proprietà di fattorizzazione. Definiamo poi gli insiemi omogenei ed esponiamo un secondo corollario al teorema, relativo a tali insiemi. Si considera poi l’esempio del controllo di qualità per meglio illustrare la nozione di statistica sufficiente osservando una situazione più concreta. Successivamente viene introdotta la nozione di statistica sufficiente a coppie e viene enunciato un secondo teorema di caratterizzazione in termini di rapporto di verosimiglianza. Si procede quindi ad un confronto tra questi due tipi di sufficienza. Tale confronto viene operato in due situazioni differenti e porta a risultati diversi per ogni caso. Si conclude dunque l’elaborato marcando ancora l’effettiva bontà di una statistica sufficiente in termini di informazioni contenute al suo interno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si introduce l'analisi della stabilità delle orbite periodiche mostrandone un risultato fondamentale: il Teorema di Poinaré. A tal fine sono preliminarmente riportati alcune definizioni e risultati riguardanti la stabilità delle soluzioni e l'esistenza di soluzioni periodiche