255 resultados para Robotica evolutiva, algoritmi genetici, reti neurali


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La distorsione della percezione della distanza tra due stimoli puntuali applicati sulla superfice della pelle di diverse regioni corporee è conosciuta come Illusione di Weber. Questa illusione è stata osservata, e verificata, in molti esperimenti in cui ai soggetti era chiesto di giudicare la distanza tra due stimoli applicati sulla superficie della pelle di differenti parti corporee. Da tali esperimenti si è dedotto che una stessa distanza tra gli stimoli è giudicata differentemente per diverse regioni corporee. Il concetto secondo cui la distanza sulla pelle è spesso percepita in maniera alterata è ampiamente condiviso, ma i meccanismi neurali che manovrano questa illusione sono, allo stesso tempo, ancora ampiamente sconosciuti. In particolare, non è ancora chiaro come sia interpretata la distanza tra due stimoli puntuali simultanei, e quali aree celebrali siano coinvolte in questa elaborazione. L’illusione di Weber può essere spiegata, in parte, considerando la differenza in termini di densità meccano-recettoriale delle differenti regioni corporee, e l’immagine distorta del nostro corpo che risiede nella Corteccia Primaria Somato-Sensoriale (homunculus). Tuttavia, questi meccanismi sembrano non sufficienti a spiegare il fenomeno osservato: infatti, secondo i risultati derivanti da 100 anni di sperimentazioni, le distorsioni effettive nel giudizio delle distanze sono molto più piccole rispetto alle distorsioni che la Corteccia Primaria suggerisce. In altre parole, l’illusione osservata negli esperimenti tattili è molto più piccola rispetto all’effetto prodotto dalla differente densità recettoriale che affligge le diverse parti del corpo, o dall’estensione corticale. Ciò, ha portato a ipotizzare che la percezione della distanza tattile richieda la presenza di un’ulteriore area celebrale, e di ulteriori meccanismi che operino allo scopo di ridimensionare – almeno parzialmente – le informazioni derivanti dalla corteccia primaria, in modo da mantenere una certa costanza nella percezione della distanza tattile lungo la superfice corporea. E’ stata così proposta la presenza di una sorta di “processo di ridimensionamento”, chiamato “Rescaling Process” che opera per ridurre questa illusione verso una percezione più verosimile. Il verificarsi di questo processo è sostenuto da molti ricercatori in ambito neuro scientifico; in particolare, dal Dr. Matthew Longo, neuro scienziato del Department of Psychological Sciences (Birkbeck University of London), le cui ricerche sulla percezione della distanza tattile e sulla rappresentazione corporea sembrano confermare questa ipotesi. Tuttavia, i meccanismi neurali, e i circuiti che stanno alla base di questo potenziale “Rescaling Process” sono ancora ampiamente sconosciuti. Lo scopo di questa tesi è stato quello di chiarire la possibile organizzazione della rete, e i meccanismi neurali che scatenano l’illusione di Weber e il “Rescaling Process”, usando un modello di rete neurale. La maggior parte del lavoro è stata svolta nel Dipartimento di Scienze Psicologiche della Birkbeck University of London, sotto la supervisione del Dott. M. Longo, il quale ha contribuito principalmente all’interpretazione dei risultati del modello, dando suggerimenti sull’elaborazione dei risultati in modo da ottenere un’informazione più chiara; inoltre egli ha fornito utili direttive per la validazione dei risultati durante l’implementazione di test statistici. Per replicare l’illusione di Weber ed il “Rescaling Proess”, la rete neurale è stata organizzata con due strati principali di neuroni corrispondenti a due differenti aree funzionali corticali: • Primo strato di neuroni (il quale dà il via ad una prima elaborazione degli stimoli esterni): questo strato può essere pensato come parte della Corteccia Primaria Somato-Sensoriale affetta da Magnificazione Corticale (homunculus). • Secondo strato di neuroni (successiva elaborazione delle informazioni provenienti dal primo strato): questo strato può rappresentare un’Area Corticale più elevata coinvolta nell’implementazione del “Rescaling Process”. Le reti neurali sono state costruite includendo connessioni sinaptiche all’interno di ogni strato (Sinapsi Laterali), e connessioni sinaptiche tra i due strati neurali (Sinapsi Feed-Forward), assumendo inoltre che l’attività di ogni neurone dipenda dal suo input attraverso una relazione sigmoidale statica, cosi come da una dinamica del primo ordine. In particolare, usando la struttura appena descritta, sono state implementate due differenti reti neurali, per due differenti regioni corporee (per esempio, Mano e Braccio), caratterizzate da differente risoluzione tattile e differente Magnificazione Corticale, in modo da replicare l’Illusione di Weber ed il “Rescaling Process”. Questi modelli possono aiutare a comprendere il meccanismo dell’illusione di Weber e dare così una possibile spiegazione al “Rescaling Process”. Inoltre, le reti neurali implementate forniscono un valido contributo per la comprensione della strategia adottata dal cervello nell’interpretazione della distanza sulla superficie della pelle. Oltre allo scopo di comprensione, tali modelli potrebbero essere impiegati altresì per formulare predizioni che potranno poi essere verificate in seguito, in vivo, su soggetti reali attraverso esperimenti di percezione tattile. E’ importante sottolineare che i modelli implementati sono da considerarsi prettamente come modelli funzionali e non intendono replicare dettagli fisiologici ed anatomici. I principali risultati ottenuti tramite questi modelli sono la riproduzione del fenomeno della “Weber’s Illusion” per due differenti regioni corporee, Mano e Braccio, come riportato nei tanti articoli riguardanti le illusioni tattili (per esempio “The perception of distance and location for dual tactile pressures” di Barry G. Green). L’illusione di Weber è stata registrata attraverso l’output delle reti neurali, e poi rappresentata graficamente, cercando di spiegare le ragioni di tali risultati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I sistemi di intelligenza artificiale vengono spesso messi a confronto con gli aspetti biologici riguardanti il cervello umano. L’interesse per la modularità è in continua crescita, che sta portando a risultati davvero interessanti attraverso l’utilizzo di sistemi artificiali intelligenti, come le reti neuronali. Molte reti, sia biologiche sia artificiali sono organizzate in moduli, i quali rappresentano cluster densi di parti interconnesse fra loro all’interno di una rete complessa. Nel campo dell’ingegneria, si usano design modulari per spiegare come una macchina è costituita da parti separate. Lo studio della struttura e delle funzioni di organismi/processi complessi si basa implicitamente su un principio di organizzazione modulare, vale a dire si dà per acquisito il fatto che siano modulari, cioè composti da parti con forma e/o funzioni diverse. Questo elaborato si propone di esporre gli aspetti fondamentali riguardanti la modularità di reti neuronali, le sue origini evolutive, le condizioni necessarie o sufficienti che favoriscono l’emergere dei moduli e relativi vantaggi. Il primo capitolo fornisce alcune conoscenze di base che permettono di leggere gli esperimenti delle parti successive con consapevolezza teorica più profonda. Si descrivono reti neuronali artificiali come sistemi intelligenti ispirati alla struttura di reti neurali biologiche, soffermandosi in particolare sulla rete feed-forward, sull’algoritmo di backpropagation e su modelli di reti neurali modulari. Il secondo capitolo offre una visione delle origini evolutive della modularità e dei meccanismi evolutivi riguardanti sistemi biologici, una classificazione dei vati tipi di modularità, esplorando il concetto di modularità nell’ambito della psicologia cognitiva. Si analizzano i campi disciplinari a cui questa ricerca di modularità può portare vantaggi. Dal terzo capitolo che inizia a costituire il corpo centrale dell’elaborato, si dà importanza alla modularità nei sistemi computazionali, illustrando alcuni casi di studio e relativi metodi presenti in letteratura e fornendo anche una misura quantitativa della modularità. Si esaminano le varie possibilità di evoluzione della modularità: spontanea, da specializzazione, duplicazione, task-dependent, ecc. passando a emulare l’evoluzione di sistemi neurali modulari con applicazione al noto modello “What-Where” e a vari modelli con caratteristiche diverse. Si elencano i vantaggi che la modularità produce, soffermandosi sull’algoritmo di apprendimento, sugli ambienti che favoriscono l’evoluzione della modularità con una serie di confronti fra i vari tipi, statici e dinamici. In ultimo, come il vantaggio di avere connessioni corte possa portare a sviluppare modularità. L’obiettivo comune è l’emergere della modularità in sistemi neuronali artificiali, che sono usati per applicazioni in numerosi ambiti tecnologici.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il documento tratta la famiglia di metodologie di allenamento e sfruttamento delle reti neurali ricorrenti nota sotto il nome di Reservoir Computing. Viene affrontata un'introduzione sul Machine Learning in generale per fornire tutti gli strumenti necessari a comprendere l'argomento. Successivamente, vengono dati dettagli implementativi ed analisi dei vantaggi e punti deboli dei vari approcci, il tutto con supporto di codice ed immagini esplicative. Nel finale vengono tratte conclusioni sugli approcci, su quanto migliorabile e sulle applicazioni pratiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi vengono proposte una modellazione di un quadrotor affetto da un campo vettoriale incognito aerodinamico e la sua identificazione basata su non linear geometric approach e su reti neurali a funzione di base radiale (RBF). Il non linear geometric approach viene utilizzato per il disaccoppiamento delle componenti incognite aerodinamiche mentre le modellazione RBF dei coefficienti permette di applicare un algoritmo ai minimi quadrati per l'identificazione del sistema. Infine viene implementato un simulatore in ambiente MATLAB Simulink per la validazione della metodologia. Le simulazioni effettuate dimostrano la bontà del metodo proposto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si pone come obiettivo quello di esplorare la possibilità di evolvere automi cellulari utilizzando algoritmi genetici al fine di trovare delle regole evolutive che permettano di generare un'immagine binaria qualunque a partire da una configurazione iniziale fissata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo elaborato concerne la revisione della letteratura scientifica relativa alla teorizzazione e realizzazione tecnologica del memristor, un nuovo componente elettronico teorizzato nel 1971 e realizzato solo nel 2008 nei laboratori della HP (Hewlett Packard, Palo Alto, California). Dopo una descrizione in termini matematici della teoria fisica alla base del dispositivo e del suo funzionamento, viene descritta la sua realizzazione tecnologica e il corrispettivo modello teorico. Succesivamente il lavoro discute la possibile analogia tra il funzionamento del memristor ed il funzionamento di neuroni e sinapsi biologiche all'interno del Sistema Nervoso Centrale. Infine, vengono descritte le architetture recentemente proposte per l'implementazione di reti neurali artificiali fondate su un sistema computazionale parallelo e realizzate mediante sistemi ibridi transistors/memristors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’elaborato affronta la tematica della detonazione nel motore a combustione interna, al fine di individuare un modello che sia in grado di riprodurre il fenomeno in modo accurato, con la prospettiva di un uso a scopo predittivo. A tal proposito vengono presentati modelli basati su svariate metodologie: in particolar modo, accanto ai metodi basati sulle grandezze direttamente o indirettamente misurabili del motore ad accensione comandata, vengono presentati un metodo basato sull’applicazione delle reti neurali, una metodologia di controllo basata sull’approccio True Digital Control, e due metodi che si avvalgono di procedimenti di tipo puramente statistico (metodo dei minimi quadrati e metodo Monte Carlo) per ricavare alcune delle grandezze fondamentali per il calcolo della detonazione. Successivamente, dopo una breve parentesi sulle simulazioni di tipo 3D, vengono introdotti i modelli fisici zero-dimensionali. Uno di questi, basato su un indice (definito dal simbolo Kn) capace di dare una valutazione quantitativa del fenomeno, viene applicato ad un insieme di dati sperimentali provenienti dai test al banco di un motore Ducati 1200. I risultati dell’analisi vengono confrontati con le evidenze sperimentali, sottolineando la buona rispondenza delle simulazioni ad essi e di conseguenza la potenzialità di tali metodi, computazionalmente non onerosi e di rapida applicazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’attuale panorama motoristico, fortemente guidato dalle normative, prevede l’implementazione di diverse tecnologie che hanno lo scopo di migliorare l’efficienza del motore e ridurre le emissioni di inquinanti e per le quali risulta necessario una corretta progettazione dei condotti di aspirazione. Lo sviluppo ottimale dei condotti risulta un compromesso tra obiettivi contrastanti e in termini matematici si tratta di un’ottimizzazione multiobiettivo. Le simulazioni CFD e gli algoritmi genetici sono stati applicati con successo allo studio di questi problemi, ma la combinazione di questi elementi risulta notevolmente dispendiosa in termini di tempo, in quanto sarebbero necessarie un alto numero di simulazioni. Per ridurre i tempi di calcolo, un set di simulazioni CFD pu`o essere pi`u convenientemente utilizzato per istruire una rete neurale, che una volta opportunamente istruita pu`o essere usata per prevedere gli output delle simulazioni in funzione dei parametri di progetto durante l’ottimizzazione con l’algoritmo genetico, operando quella che viene chiamata una ottimizzazione virtuale. In questa tesi, viene mostrata una metodologia numerica per l’ottimizzazione multi-obiettivo dei condotti di aspirazione, basata su un modello CAD a geometria variabile, le simulazioni fluidodinamiche tridimensionali e una rete neurale combinata con un algoritmo genetico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le malattie rare pongono diversi scogli ai pazienti, ai loro familiari e ai sanitari. Uno fra questi è la mancanza di informazione che deriva dall'assenza di fonti sicure e semplici da consultare su aspetti dell'esperienza del paziente. Il lavoro presentato ha lo scopo di generare da set termini correlati semanticamente, delle frasi che abbiamo la capacità di spiegare il legame fra di essi e aggiungere informazioni utili e veritiere in un linguaggio semplice e comprensibile. Il problema affrontato oggigiorno non è ben documentato in letteratura e rappresenta una sfida interessante si per complessità che per mancanza di dataset per l'addestramento. Questo tipo di task, come altri di NLP, è affrontabile solo con modelli sempre più potenti ma che richiedono risorse sempre più elevate. Per questo motivo, è stato utilizzato il meccanismo di recente pubblicazione del Performer, dimostrando di riuscire a mantenere uno stesso grado di accuratezza e di qualità delle frasi prodotte, con una parallela riduzione delle risorse utilizzate. Ciò apre la strada all'utilizzo delle reti neurali più recenti anche senza avere i centri di calcolo delle multinazionali. Il modello proposto dunque è in grado di generare frasi che illustrano le relazioni semantiche di termini estratti da un mole di documenti testuali, permettendo di generare dei riassunti dell'informazione e della conoscenza estratta da essi e renderla facilmente accessibile e comprensibile al pazienti o a persone non esperte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopo lo sviluppo dei primi casi di Covid-19 in Cina nell’autunno del 2019, ad inizio 2020 l’intero pianeta è precipitato in una pandemia globale che ha stravolto le nostre vite con conseguenze che non si vivevano dall’influenza spagnola. La grandissima quantità di paper scientifici in continua pubblicazione sul coronavirus e virus ad esso affini ha portato alla creazione di un unico dataset dinamico chiamato CORD19 e distribuito gratuitamente. Poter reperire informazioni utili in questa mole di dati ha ulteriormente acceso i riflettori sugli information retrieval systems, capaci di recuperare in maniera rapida ed efficace informazioni preziose rispetto a una domanda dell'utente detta query. Di particolare rilievo è stata la TREC-COVID Challenge, competizione per lo sviluppo di un sistema di IR addestrato e testato sul dataset CORD19. Il problema principale è dato dal fatto che la grande mole di documenti è totalmente non etichettata e risulta dunque impossibile addestrare modelli di reti neurali direttamente su di essi. Per aggirare il problema abbiamo messo a punto nuove soluzioni self-supervised, a cui abbiamo applicato lo stato dell'arte del deep metric learning e dell'NLP. Il deep metric learning, che sta avendo un enorme successo soprattuto nella computer vision, addestra il modello ad "avvicinare" tra loro immagini simili e "allontanare" immagini differenti. Dato che sia le immagini che il testo vengono rappresentati attraverso vettori di numeri reali (embeddings) si possano utilizzare le stesse tecniche per "avvicinare" tra loro elementi testuali pertinenti (e.g. una query e un paragrafo) e "allontanare" elementi non pertinenti. Abbiamo dunque addestrato un modello SciBERT con varie loss, che ad oggi rappresentano lo stato dell'arte del deep metric learning, in maniera completamente self-supervised direttamente e unicamente sul dataset CORD19, valutandolo poi sul set formale TREC-COVID attraverso un sistema di IR e ottenendo risultati interessanti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La decodifica dei segnali elettroencefalografici (EEG) consiste nell’analisi del segnale per classificare le azioni o lo stato cognitivo di un soggetto. Questi studi possono permettere di comprendere meglio i correlati neurali alla base del movimento, oltre che avere un’applicazione pratica nelle Brain Computer Interfaces. In questo ambito, di rilievo sono le reti neurali convoluzionali (Convolutional Neural Networks, CNNs), che grazie alle loro elevate performance stanno acquisendo importanza nella decodifica del segnale EEG. In questo elaborato di tesi è stata addestrata una CNN precedentemente proposta in letteratura, EEGNet, per classificare i segnali EEG acquisiti durante movimenti di reaching del braccio dominante, sulla base della posizione del target da raggiungere. I dati sono stati acquisiti su dieci soggetti grazie al protocollo sviluppato in questo lavoro, in cui 5 led disposti su una semicirconferenza rappresentano i target del movimento e l’accensione casuale di un led identifica il target da raggiungere in ciascuna prova. I segnali EEG acquisiti sono stati quindi ricampionati, filtrati e suddivisi in epoche di due secondi attorno all’inizio di ciascun movimento, rimuovendo gli artefatti oculari mediante ICA. La rete è stata valutata in tre task di classificazione, uno a cinque classi (una posizione target per classe) e due a tre classi (raggruppando più posizioni target per classe). Per ogni task, la rete è stata addestrata in cross-validazione utilizzando un approccio within-subject. Con questo approccio sono state addestrate e validate 15 CNNs diverse per ogni soggetto. Infine, è stato calcolato l’F1 score per ciascun task di classificazione, mediando i risultati sui soggetti, per valutare quantitativamente le performance della CNN che sono risultati migliori nel classificare target disposti a destra e a sinistra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il seguente lavoro si propone come analisi degli operatori convoluzionali che caratterizzano le graph neural networks. ln particolare, la trattazione si divide in due parti, una teorica e una sperimentale. Nella parte teorica vengono innanzitutto introdotte le nozioni preliminari di mesh e convoluzione su mesh. In seguito vengono riportati i concetti base del geometric deep learning, quali le definizioni degli operatori convoluzionali e di pooling e unpooling. Un'attenzione particolare è stata data all'architettura Graph U-Net. La parte sperimentare riguarda l'applicazione delle reti neurali e l'analisi degli operatori convoluzionali applicati al denoising di superfici perturbate a causa di misurazioni imperfette effettuate da scanner 3D.