36 resultados para Online services using open-source NLP tools
Resumo:
This thesis is based on two studies that are related to floating wave energy conversion (WEC) devices and turbulent fountains. The ability of the open-source CFD software OpenFOAM® has been studied to simulate these phenomena. The CFD model has been compared with the physical experimental results. The first study presents a model of a WEC device, called MoonWEC, which is patented by the University of Bologna. The CFD model of the MoonWEC under the action of waves has been simulated using OpenFOAM and the results are promising. The reliability of the CFD model is confirmed by the laboratory experiments, conducted at the University of Bologna, for which a small-scale prototype of the MoonWEC was made from wood and brass. The second part of the thesis is related to the turbulent fountains which are formed when a heavier source fluid is injected upward into a lighter ambient fluid, or else a lighter source fluid is injected downward into a heavier ambient fluid. For this study, the first case is considered for laboratory experiments and the corresponding CFD model. The vertical releases of the source fluids into a quiescent, uniform ambient fluid, from a circular source, were studied with different densities in the laboratory experiments, conducted at the University of Parma. The CFD model has been set up for these experiments. Favourable results have been observed from the OpenFOAM simulations for the turbulent fountains as well, indicating that it can be a reliable tool for the simulation of such phenomena.
Resumo:
The main goal of this thesis is to study the impact of retransmissions in the upcoming IEEE 802.11bd standard and to determine an algorithm which can, on a vehicle to vehicle basis, activate them or not depending on the channel state, using the channel busy rate (CBR) as the leading metric. The study was based on simulations performed with the WiLabV2Xsim, which is an open source discrete event simulator that can be used to simulate communication between vehicles under the rules of different protocols.
Resumo:
The main objective of my thesis work is to exploit the Google native and open-source platform Kubeflow, specifically using Kubeflow pipelines, to execute a Federated Learning scalable ML process in a 5G-like and simplified test architecture hosting a Kubernetes cluster and apply the largely adopted FedAVG algorithm and FedProx its optimization empowered by the ML platform ‘s abilities to ease the development and production cycle of this specific FL process. FL algorithms are more are and more promising and adopted both in Cloud application development and 5G communication enhancement through data coming from the monitoring of the underlying telco infrastructure and execution of training and data aggregation at edge nodes to optimize the global model of the algorithm ( that could be used for example for resource provisioning to reach an agreed QoS for the underlying network slice) and after a study and a research over the available papers and scientific articles related to FL with the help of the CTTC that suggests me to study and use Kubeflow to bear the algorithm we found out that this approach for the whole FL cycle deployment was not documented and may be interesting to investigate more in depth. This study may lead to prove the efficiency of the Kubeflow platform itself for this need of development of new FL algorithms that will support new Applications and especially test the FedAVG algorithm performances in a simulated client to cloud communication using a MNIST dataset for FL as benchmark.
Resumo:
Driven by recent deep learning breakthroughs, natural language generation (NLG) models have been at the center of steady progress in the last few years. However, since our ability to generate human-indistinguishable artificial text lags behind our capacity to assess it, it is paramount to develop and apply even better automatic evaluation metrics. To facilitate researchers to judge the effectiveness of their models broadly, we suggest NLG-Metricverse—an end-to-end open-source library for NLG evaluation based on Python. This framework provides a living collection of NLG metrics in a unified and easy- to-use environment, supplying tools to efficiently apply, analyze, compare, and visualize them. This includes (i) the extensive support of heterogeneous automatic metrics with n-arity management, (ii) the meta-evaluation upon individual performance, metric-metric and metric-human correlations, (iii) graphical interpretations for helping humans better gain score intuitions, (iv) formal categorization and convenient documentation to accelerate metrics understanding. NLG-Metricverse aims to increase the comparability and replicability of NLG research, hopefully stimulating new contributions in the area.
Resumo:
Il fine di questo elaborato riguarda lo studio di soluzioni per il contrasto di giocatori baranti controllati da algoritmi presenti nel videogioco online Team Fortress 2. Dopo una breve introduzione alla storia degli sparatutto online, si descriverà il funzionamento di tutti i componenti che sviluppano l'ambiente di gioco, oltre a definire termini e sistemi vitali per la comprensione dell'elaborato ed una breve introduzione a Team Fortress 2. Si procederà alla discussione del cheat e dei software e/o environment sfruttati dagli attacanti in partita, andando a cercare di spiegare il meccanismo e l'origine di questi elementi, nonché introdurre il concetto dei bot baranti implementati usando il programma open source cathook. Una volta spiegata la minaccia si andrà a spiegare la difesa da parte del gioco e degli sviluppatori attraverso il software di anticheat Valve Anti-Cheat (VAC) presente sul gioco, definendo le terminologie e alcune caratteristiche comuni rispetto agli altri, per poi introdurre le nuove tecnologie di contrasto sviluppati per Counter Strike: Global Offensive, ovvero Overwatch, Trust Factor e l'anticheat con deep learning VACNET. Infine, dopo aver definito più approfonditamente il funzionamento degli algoritmi baranti, verranno suggerite delle possibili soluzioni implementabili e del motivo per cui non riescono a risolvere completamente il problema. Concluderemo spiegando cosa stanno facendo i sviluppatori, per poi descrivere come effettivamente il problema possiede come l'unica soluzione di evitare di giocare nei server ufficiali di gioco, mantenendo comunque gli algoritmi liberi nei server ufficiali.
Resumo:
Since the majority of the population of the world lives in cities and that this number is expected to increase in the next years, one of the biggest challenges of the research is the determination of the risk deriving from high temperatures experienced in urban areas, together with improving responses to climate-related disasters, for example by introducing in the urban context vegetation or built infrastructures that can improve the air quality. In this work, we will investigate how different setups of the boundary and initial conditions set on an urban canyon generate different patterns of the dispersion of a pollutant. To do so we will exploit the low computational cost of Reynolds-Averaged Navier-Stokes (RANS) simulations to reproduce the dynamics of an infinite array of two-dimensional square urban canyons. A pollutant is released at the street level to mimic the presence of traffic. RANS simulations are run using the k-ɛ closure model and vertical profiles of significant variables of the urban canyon, namely the velocity, the turbulent kinetic energy, and the concentration, are represented. This is done using the open-source software OpenFOAM and modifying the standard solver simpleFoam to include the concentration equation and the temperature by introducing a buoyancy term in the governing equations. The results of the simulation are validated with experimental results and products of Large-Eddy Simulations (LES) from previous works showing that the simulation is able to reproduce all the quantities under examination with satisfactory accuracy. Moreover, this comparison shows that despite LES are known to be more accurate albeit more expensive, RANS simulations represent a reliable tool if a smaller computational cost is needed. Overall, this work exploits the low computational cost of RANS simulations to produce multiple scenarios useful to evaluate how the dispersion of a pollutant changes by a modification of key variables, such as the temperature.