90 resultados para Machine Learning,Natural Language Processing,Descriptive Text Mining,POIROT,Transformer
Resumo:
The following thesis aims to investigate the issues concerning the maintenance of a Machine Learning model over time, both about the versioning of the model itself and the data on which it is trained and about data monitoring tools and their distribution. The themes of Data Drift and Concept Drift were then explored and the performance of some of the most popular techniques in the field of Anomaly detection, such as VAE, PCA, and Monte Carlo Dropout, were evaluated.
Resumo:
The emissions estimation, both during homologation and standard driving, is one of the new challenges that automotive industries have to face. The new European and American regulation will allow a lower and lower quantity of Carbon Monoxide emission and will require that all the vehicles have to be able to monitor their own pollutants production. Since numerical models are too computationally expensive and approximated, new solutions based on Machine Learning are replacing standard techniques. In this project we considered a real V12 Internal Combustion Engine to propose a novel approach pushing Random Forests to generate meaningful prediction also in extreme cases (extrapolation, very high frequency peaks, noisy instrumentation etc.). The present work proposes also a data preprocessing pipeline for strongly unbalanced datasets and a reinterpretation of the regression problem as a classification problem in a logarithmic quantized domain. Results have been evaluated for two different models representing a pure interpolation scenario (more standard) and an extrapolation scenario, to test the out of bounds robustness of the model. The employed metrics take into account different aspects which can affect the homologation procedure, so the final analysis will focus on combining all the specific performances together to obtain the overall conclusions.
Resumo:
Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.
Resumo:
Il monitoraggio basato su emissioni acustiche (AE) guidate si è confermato tra le tecniche più affidabili nel campo del Non-Destructive Testing delle strutture planari, vista anche la sua semplicità implementativa, i bassi costi che lo caratterizzano, la non invasività e la possibilità di realizzare un sistema che agisca in maniera continuativa ed in tempo reale sfruttando reti di sensori permanentemente installati, senza la necessità di ispezioni periodiche. In tale contesto, è possibile sfruttare l’abilità dell’apprendimento automatico nell’individuazione dei pattern nascosti all’interno dei segnali grezzi registrati, ottenendo così informazioni utili ai fini dell’applicazione considerata. L’esecuzione on-edge dei modelli, ovvero sul punto di acquisizione, consente di superare le limitazioni imposte dal processamento centralizzato dei dati, con notevoli vantaggi in termini di consumo energetico, tempestività nella risposta ed integrità degli stessi. A questo scopo, si rivela però necessario sviluppare modelli compatibili con le stringenti risorse hardware dei dispositivi a basso costo tipicamente impiegati. In questo elaborato verranno prese in esame alcune tipologie di reti neurali artificiali per l’estrazione dell’istante di arrivo (ToA) di un’emissione acustica all’interno di una sequenza temporale, in particolare quelle convoluzionali (CNNs) ed una loro variante più recente, le CapsNet basate su rounting by agreement. L’individuazione dei ToA relativi al medesimo evento su segnali acquisiti in diverse posizioni spaziali consente infatti di localizzare la sorgente da cui esso è scaturito. Le dimensioni di questi modelli permettono di eseguire l’inferenza direttamente su edge-device. I risultati ottenuti confermano la maggiore robustezza delle tecniche di apprendimento profondo rispetto ai metodi statistici tradizionali nel far fronte a diverse tipologie di disturbo, in particolare negli scenari più critici dal punto di vista del rapporto segnale-rumore.
Resumo:
The comfort level of the seat has a major effect on the usage of a vehicle; thus, car manufacturers have been working on elevating car seat comfort as much as possible. However, still, the testing and evaluation of comfort are done using exhaustive trial and error testing and evaluation of data. In this thesis, we resort to machine learning and Artificial Neural Networks (ANN) to develop a fully automated approach. Even though this approach has its advantages in minimizing time and using a large set of data, it takes away the degree of freedom of the engineer on making decisions. The focus of this study is on filling the gap in a two-step comfort level evaluation which used pressure mapping with body regions to evaluate the average pressure supported by specific body parts and the Self-Assessment Exam (SAE) questions on evaluation of the person’s interest. This study has created a machine learning algorithm that works on giving a degree of freedom to the engineer in making a decision when mapping pressure values with body regions using ANN. The mapping is done with 92% accuracy and with the help of a Graphical User Interface (GUI) that facilitates the process during the testing time of comfort level evaluation of the car seat, which decreases the duration of the test analysis from days to hours.
Resumo:
Nowadays the idea of injecting world or domain-specific structured knowledge into pre-trained language models (PLMs) is becoming an increasingly popular approach for solving problems such as biases, hallucinations, huge architectural sizes, and explainability lack—critical for real-world natural language processing applications in sensitive fields like bioinformatics. One recent work that has garnered much attention in Neuro-symbolic AI is QA-GNN, an end-to-end model for multiple-choice open-domain question answering (MCOQA) tasks via interpretable text-graph reasoning. Unlike previous publications, QA-GNN mutually informs PLMs and graph neural networks (GNNs) on top of relevant facts retrieved from knowledge graphs (KGs). However, taking a more holistic view, existing PLM+KG contributions mainly consider commonsense benchmarks and ignore or shallowly analyze performances on biomedical datasets. This thesis start from a propose of a deep investigation of QA-GNN for biomedicine, comparing existing or brand-new PLMs, KGs, edge-aware GNNs, preprocessing techniques, and initialization strategies. By combining the insights emerged in DISI's research, we introduce Bio-QA-GNN that include a KG. Working with this part has led to an improvement in state-of-the-art of MCOQA model on biomedical/clinical text, largely outperforming the original one (+3.63\% accuracy on MedQA). Our findings also contribute to a better understanding of the explanation degree allowed by joint text-graph reasoning architectures and their effectiveness on different medical subjects and reasoning types. Codes, models, datasets, and demos to reproduce the results are freely available at: \url{https://github.com/disi-unibo-nlp/bio-qagnn}.
Resumo:
La tesi consiste nell’implementare un software in grado a predire la variazione della stabilità di una proteina sottoposta ad una mutazione. Il predittore implementato fa utilizzo di tecniche di Machine-Learning ed, in particolare, di SVM. In particolare, riguarda l’analisi delle prestazioni di un predittore, precedentemente implementato, sotto opportune variazioni dei parametri di input e relativamente all’utilizzo di nuova informazione rispetto a quella utilizzata dal predittore basilare.
Resumo:
L'elaborato ha come scopo l'analisi delle tecniche di Text Mining e la loro applicazione all'interno di processi per l'auto-organizzazione della conoscenza. La prima parte della tesi si concentra sul concetto del Text Mining. Viene fornita la sua definizione, i possibili campi di utilizzo, il processo di sviluppo che lo riguarda e vengono esposte le diverse tecniche di Text Mining. Si analizzano poi alcuni tools per il Text Mining e infine vengono presentati alcuni esempi pratici di utilizzo. Il macro-argomento che viene esposto successivamente riguarda TuCSoN, una infrastruttura per la coordinazione di processi: autonomi, distribuiti e intelligenti, come ad esempio gli agenti. Si descrivono innanzi tutto le entità sulle quali il modello si basa, vengono introdotte le metodologie di interazione fra di essi e successivamente, gli strumenti di programmazione che l'infrastruttura mette a disposizione. La tesi, in un secondo momento, presenta MoK, un modello di coordinazione basato sulla biochimica studiato per l'auto-organizzazione della conoscenza. Anche per MoK, come per TuCSoN, vengono introdotte le entità alla base del modello. Avvalendosi MoK dell'infrastruttura TuCSoN, viene mostrato come le entità del primo vengano mappate su quelle del secondo. A conclusione dell'argomento viene mostrata un'applicazione per l'auto-organizzazione di news che si avvale del modello. Il capitolo successivo si occupa di analizzare i possibili utilizzi delle tecniche di Text Mining all'interno di infrastrutture per l'auto-organizzazione, come MoK. Nell'elaborato vengono poi presentati gli esperimenti effettuati sfruttando tecniche di Text Mining. Tutti gli esperimenti svolti hanno come scopo la clusterizzazione di articoli scientifici in base al loro contenuto, vengono quindi analizzati i risultati ottenuti. L'elaborato di tesi si conclude mettendo in evidenza alcune considerazioni finali su quanto svolto.
Resumo:
La Word Sense Disambiguation è un problema informatico appartenente al campo di studi del Natural Language Processing, che consiste nel determinare il senso di una parola a seconda del contesto in cui essa viene utilizzata. Se un processo del genere può apparire banale per un essere umano, può risultare d'altra parte straordinariamente complicato se si cerca di codificarlo in una serie di istruzioni esguibili da una macchina. Il primo e principale problema necessario da affrontare per farlo è quello della conoscenza: per operare una disambiguazione sui termini di un testo, un computer deve poter attingere da un lessico che sia il più possibile coerente con quello di un essere umano. Sebbene esistano altri modi di agire in questo caso, quello di creare una fonte di conoscenza machine-readable è certamente il metodo che permette di affrontare il problema in maniera più diretta. Nel corso di questa tesi si cercherà, come prima cosa, di spiegare in cosa consiste la Word Sense Disambiguation, tramite una descrizione breve ma il più possibile dettagliata del problema. Nel capitolo 1 esso viene presentato partendo da alcuni cenni storici, per poi passare alla descrizione dei componenti fondamentali da tenere in considerazione durante il lavoro. Verranno illustrati concetti ripresi in seguito, che spaziano dalla normalizzazione del testo in input fino al riassunto dei metodi di classificazione comunemente usati in questo campo. Il capitolo 2 è invece dedicato alla descrizione di BabelNet, una risorsa lessico-semantica multilingua di recente costruzione nata all'Università La Sapienza di Roma. Verranno innanzitutto descritte le due fonti da cui BabelNet attinge la propria conoscenza, WordNet e Wikipedia. In seguito saranno illustrati i passi della sua creazione, dal mapping tra le due risorse base fino alla definizione di tutte le relazioni che legano gli insiemi di termini all'interno del lessico. Infine viene proposta una serie di esperimenti che mira a mettere BabelNet su un banco di prova, prima per verificare la consistenza del suo metodo di costruzione, poi per confrontarla, in termini di prestazioni, con altri sistemi allo stato dell'arte sottoponendola a diversi task estrapolati dai SemEval, eventi internazionali dedicati alla valutazione dei problemi WSD, che definiscono di fatto gli standard di questo campo. Nel capitolo finale vengono sviluppate alcune considerazioni sulla disambiguazione, introdotte da un elenco dei principali campi applicativi del problema. Vengono in questa sede delineati i possibili sviluppi futuri della ricerca, ma anche i problemi noti e le strade recentemente intraprese per cercare di portare le prestazioni della Word Sense Disambiguation oltre i limiti finora definiti.
Resumo:
Questo elaborato ha come scopo quello di analizzare ed esaminare una patologia oggetto di attiva ricerca scientifica, la sindrome dell’arto fantasma o phantom limb pain: tracciando la storia delle terapie più utilizzate per la sua attenuazione, si è giunti ad analizzarne lo stato dell’arte. Consapevoli che la sindrome dell’arto fantasma costituisce, oltre che un disturbo per chi la prova, uno strumento assai utile per l’analisi delle attività nervose del segmento corporeo superstite (moncone), si è svolta un’attività al centro Inail di Vigorso di Budrio finalizzata a rilevare segnali elettrici provenienti dai monconi superiori dei pazienti che hanno subito un’amputazione. Avendo preliminarmente trattato l’argomento “Machine learning” per raggiungere una maggiore consapevolezza delle potenzialità dell’apprendimento automatico, si sono analizzate la attività neuronali dei pazienti mentre questi muovevano il loro arto fantasma per riuscire a settare nuove tipologie di protesi mobili in base ai segnali ricevuti dal moncone.