364 resultados para ALMASat-EO, Modello termico, ESATAN


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La ricerca è collocata nell’ambito del progetto europeo “GREEN AIR” (7FP – Transport) che è finalizzato alla produzione di idrogeno a bordo di aerei mediante deidrogenazione catalitica di cherosene avio. La deidrogenazione di molecole organiche volta alla produzione di idrogeno è una reazione poco studiata; in letteratura sono presenti solo esempi di deidrogenazione di molecole singole, tipicamente a basso peso molecolare, per la produzione di olefine. Già per questi substrati la conduzione della reazione risulta molto complessa, quindi l’impiego di frazioni di combustibili reali rende ancora più problematica le gestione del processo. L’individuazione dei parametri operativi e della corretta formulazione del catalizzatore possono essere definiti accuratamente solo dopo un approfondito studio dei meccanismi di reazione e di disattivazione. Pertanto questo lavoro ha come obiettivo lo studio di questi meccanismi partendo da molecole modello per giungere poi a definire la reattività di miscele complesse. Le problematiche principali che si presentano nella conduzione di questa reazione sono la disattivazione da coke e da zolfo. Quindi è evidente che la comprensione dei meccanismi di reazione, di formazione dei depositi carboniosi e dell’avvelenamento da zolfo è uno stadio fondamentale per delineare quali siano i requisiti necessari alla realizzazione del processo. Il fine ultimo della ricerca è quello di utilizzare le informazioni acquisite dallo studio dei meccanismi coinvolti per arrivare a formulare un catalizzatore capace di soddisfare i requisiti del progetto, sia in termini di produttività di idrogeno sia in termini di tempo di vita, unitamente alla definizione di accorgimenti utili al miglioramento della conduzione della reazione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le biomasse hanno sempre rappresentato per l’umanità una fonte estremamente versatile e rinnovabile di risorse e tutt’oggi il loro impiego risulta vantaggioso in particolare per produrre energia termica ed elettrica attraverso processi di combustione, sistemi che tuttavia emettono sostanze dannose verso la salute umana e l’ecosistema. Queste pressioni ambientali hanno indotto alcune amministrazioni regionali (fra cui la Lombardia) a bandire temporaneamente l’installazione di nuovi impianti a biomasse, per prevenire e contenere le emissioni in atmosfera a tutela della salute e dell’ambiente. Il presente studio intende approfondire l’effetto ambientale di tali sistemi di riscaldamento domestico attraverso la tecnologia di analisi LCA (Life Cycle Assessment). Lo scopo dell’elaborato di Tesi consiste nell’eseguire un’analisi dell’intero ciclo di vita di due processi di riscaldamento domestico che utilizzino biomassa legnosa: una stufa innovativa a legna e una stufa a pellet. L’analisi ha quindi posto a confronto i due scenari con mezzi di riscaldamento domestico alternativi quali il boiler a gas, il pannello solare termico integrato con caldaia a gas e la pompa di calore elettrica. È emerso che tra i due scenari a biomassa quello a legna risulti decisamente più impattante verso le categorie salute umana e qualità dell’ecosistema , mentre per il pellet si è riscontrato un impatto maggiore del precedente nella categoria consumo di risorse. Dall’analisi di contributo è emerso che l’impatto percentuale maggiore per entrambi gli scenari sia legato allo smaltimento delle ceneri, pertanto si è ipotizzata una soluzione alternativa in cui esse vengano smaltite nell’inceneritore, riducendo così gli impatti. I risultati del punteggio singolo mostrano come lo scenario di riscaldamento a legna produca un quantitativo di particolato superiore rispetto al processo di riscaldamento a pellet, chiaramente dovuto alle caratteristiche chimico-fisiche dei combustibili ed alla efficienza di combustione. Dal confronto con gli scenari di riscaldamento alternativi è emerso che il sistema più impattante per le categorie salute umana e qualità dell’ecosistema rimane quello a legna, seguito dal pellet. I processi alternativi presentano impatti maggiori alla voce consumo di risorse. Per avvalorare i risultati ottenuti per i due metodi a biomassa è stata eseguita un’analisi di incertezza attraverso il metodo Monte Carlo, ad un livello di confidenza del 95%. In conclusione si può affermare che i sistemi di riscaldamento domestico che impiegano processi di combustione della biomassa legnosa sono certamente assai vantaggiosi, poiché pareggiano il quantitativo di CO2 emessa con quella assorbita durante il ciclo di vita, ma al tempo stesso possono causare maggiori danni alla salute umana e all’ecosistema rispetto a quelli tradizionali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo sviluppo di nuovi processi per la chimica industriale vede come fulcro della ricerca l’armonizzazione tra gli aspetti economici, sociali, ambientali e quelli relativi alla sicurezza; questi ultimi incidono profondamente sull’approccio scientifico indirizzando il chimico moderno verso una chimica focalizzata sulla catalisi e sulla manipolazione di sostanze con basso pericolo intrinseco. Un esempio di obbiettivo da perseguire è quindi lo studio, l’ottimizzazione e la messa in opera di processi che utilizzino bioetanolo come “building-block” per la sintesi di intermedi, quali per esempio acetonitrile, attualmente ottenuto principalmente come sottoprodotto della sintesi industriale dell’acrilonitrile. Il lavoro di tesi, che ha visto coinvolta la mia partecipazione, ha permesso di evidenziare gli aspetti positivi, nonché quelli critici nella reazione di sintesi di acetonitrile mediante ammonossidazione in fase gas a partire da etanolo, in cui come catalizzatore modello è stato utilizzato pirofosfato di vanadile. Investigando il contributo apportato dai vari componenti della miscela di reazione, dei parametri operativi, quali temperatura e tempo di contatto, è stato possibile studiare la reazione in ogni suo aspetto mettendo in evidenza anche i limiti derivanti dall’utilizzo di questo particolare sistema catalitico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi viene descritto lo studio delle fasi liquido-cristalline del 4-n-ottil-4-cianobifenile eseguito tramite simulazioni al calcolatore molecular dynamics, sia per campioni bulk che per film smectici sottili. Impiegando un campo di forze "molecular mechanics" precedentemente usato con successo per studiare sistemi composti da 250 molecole della serie degli n-cianobifenili (nCB, con n pari a 4-8 atomi di carbonio nella catena alifatica), si è simulato il comportamento di un sistema bulk di 750 molecole e di un film smectico di 1500 molecole. Nel primo caso, sottoponendo il campione a un graduale raffreddamento, si è osservata la formazione spontanea di fasi ordinate quali quella nematica e quella smectica. Nel secondo caso, invece, si è studiata l'influenza dell'interfaccia con il vuoto sull'ordine posizionale e orientazionale di film sottili di diverso spessore e temperatura. Si sono confrontate le proprietà di entrambi i sistemi simulati con i dati sperimentali disponibili in letteratura, confermando la bontà del modello nel riprodurre fedelmente le caratteristiche dei campioni reali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I tumori macroscopici e microscopici, dopo la loro prima fase di crescita, sono composti da un numero medio elevato di cellule. Così, in assenza di perturbazioni esterne, la loro crescita e i punti di equilibrio possono essere descritti da equazioni differenziali. Tuttavia, il tumore interagisce fortemente col macroambiente che lo circonda e di conseguenza una descrizione del tutto deterministica risulta a volte inappropriata. In questo caso si può considerare l'interazione con fluttuazioni statistiche, causate da disturbi esterni, utilizzando le equazioni differenziali stocastiche (SDE). Questo è vero in modo particolare quando si cerca di modellizzare tumori altamente immunogenici che interagiscono con il sistema immunitario, in quanto la complessità di questa interazione risulta in fenomeni di multistabilità. Così, il rumore può provocare disturbi e indurre transizioni di stato (Noise-Induced-Transitions). E' importante notare che una NIT può avere implicazioni profonde sulla vita di un paziente, dal momento che una transizione da uno stato di equilibrio piccolo, nelle dimensioni del tumore, ad uno stato di equilibrio macroscopico, nella maggior parte dei casi significa il passaggio dalla vita alla morte. Generalmente l'approccio standard è quello di modellizzare le fluttuazioni stocastiche dei parametri per mezzo di rumore gaussiano bianco o colorato. In alcuni casi però questa procedura è altamente inadeguata, a causa della illimitatezza intrinseca dei rumori gaussiani che può portare a gravi incongruenze biologiche: pertanto devono essere utilizzati dei rumori "limitati", che, tuttavia, sono molto meno studiati di quelli gaussiani. Inoltre, l'insorgenza di NIT dipende dal tipo di rumore scelto, che rivela un nuovo livello di complessità in biologia. Lo scopo di questa tesi è quello di studiare le applicazioni di due tipi diversi di "rumori limitati" nelle transizioni indotte in due casi: interazione tra tumore e sistema immunitario e chemioterapia dei tumori. Nel primo caso, abbiamo anche introdotto un nuovo modello matematico di terapia, che estende, in modo nuovo, il noto modello di Norton-Simon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nell'ambito delle Service-Oriented Architecture, il linguaggio JOLIE, assieme al suo editor jEye, consentono la realizzazione di orchestratori. Questa tesi realizza (modello e implementazione) il supporto per l'Ambiente Dati

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi si occupa degli aspetti di usabilità nell'interazione degli utenti con le applicazioni, usando le tecniche di generazione automatica della Model-Driven Architecture. Viene prodotto un generatore di applicazioni model-driven, basato su un modello di progettazione Goal-Oriented, con risultati apprezzabili nel fornire all'utente un'interazione dinamica con l'applicazione prodotta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi di laurea ha un duplice scopo: da un lato l’analisi delle caratteristiche delle balle di paglia usate come materiale da costruzione, dall’altro la valutazione ambientale tramite metodologia LCA di un intervento di reinsediamento post-sisma a Pescomaggiore, in Abruzzo, realizzato con edifici in balle di paglia autocostruiti. Nella parte prima si focalizza l’attenzione sulle direttive europee e i loro recepimenti italiani a cui fare riferimento per le gestione energetica degli edifici, oltre ad una panoramica sulla certificazione energetica. Si riportano inoltre sinteticamente quelle parti della normativa edilizia che riguardano le costruzioni con materiali innovativi. La parte seconda è il frutto di una lunga fase di ricerca bibliografica, in cui si è cercato di fare chiarezza sulle caratteristiche della paglia: traspirabilità, isolamento termico, resistenza al fuoco e fonoassorbenza le parti su cui si è maggiormente rivolta l’attenzione. Nella parte terza viene descritta dettagliatamente la metodologia LCA, e in particolare la sua applicazione nel campo dell’edilizia: le diverse fasi in cui si compone, l’uso di software e di banche dati appropriate e i metodi più utilizzati per l’analisi degli impatti. Nella quarta ed ultima parte viene descritto dettagliatamente il caso di studio: una delle case di paglia dell’Ecovillaggio di Pescomaggiore; segue una descrizione accurata della fase di inventario, effettuata anche tramite un sopralluogo in sito. Infine vengono riportati e commentati i risultati dell’analisi, ed espresse considerazioni e proposte migliorative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le conoscenze relative al controllo ormonale del metabolismo epatico dei pesci sono ancora piuttosto limitate e per molti anni sono state controverse. Per lungo tempo si è ritenuto che le catecolamine, adrenalina e noradrenalina, agissero nel fegato dei pesci soltanto attraverso i recettori adrenergici di tipo β. Quindi l’assetto recettoriale dei mammiferi, che comprende recettori α e β, era considerato frutto di un processo evolutivo che non aveva ancora avuto luogo nei pesci. Successivamente, nel fegato di vari teleostei è stata dimostrata la presenza di recettori sia α che β. Tuttavia il ruolo fisiologico dei due tipi di recettori non è ancora chiaro. Per esempio, in acciughe e sgombri non è stato fatto alcuno studio sulla risposta alle catecolamine ottenuta attraverso i recettori α e β, nel fegato di trota i recettori α non sono accoppiati alla cascata fisiologica che porta al rilascio di glucosio, e in anguilla e pesce gatto l’azione delle catecolamine attraverso recettori β è predominante rispetto a quella attraverso recettori α. L’utilizzo di ligandi farmacologici non ha portato a chiarimenti significativi, perché la loro specificità per i recettori di mammifero non trova sempre riscontro nei pesci. In questo studio, quindi, abbiamo studiato l’espressione dei geni codificanti per i recettori α e β adrenergici attraverso la tecnica della PCR real time, ottenendo i primi dati in letteratura per quanto riguarda la loro quantificazione assoluta. L’organismo modello utilizzato è stata l’anguilla, teleosteo caratterizzato da un ciclo biologico molto particolare in cui si distinguono nettamente una fase gialla ed una argentina. Le anguille argentine non sono mai state studiate a tale proposito, e date le estreme differenze nella disponibilità e nell’uso delle risorse energetiche in questi due stadi di crescita, il presente studio ha mirato a valutare la differente sensibilità alle catecolamine da parte degli epatociti isolati da anguille gialle ed argentine. I nostri dati hanno confermato quanto solo ipotizzato nei vari studi pubblicati negli ultimi due decenni, ma mai avvalorato da risultati sperimentali, cioè che i recettori α e β sono contemporaneamente espressi negli epatociti dell’anguilla, sia gialla che argentina, e la proporzione tra loro giustifica il ruolo significativamente maggiore giocato dai recettori β. Nelle anguille argentine infatti, come nelle gialle, l’effetto dell’adrenalina sul rilascio di glucosio ottenuto attraverso recettori β è chiaramente predominante. Inoltre, i nostri dati indicano che in due diverse fasi del ciclo vitale dell’anguilla, così come si osserva nell’ontogenesi dei mammiferi, i recettori adrenergici sono espressi in quantità differente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questo lavoro di tesi intende approfondire gli aspetti relativi alla valorizzazione della frazione organica da rifiuti solidi urbani (FORSU) per la produzione di biogas mediante fermentazione anaerobica. In particolare sono stati studiati pretrattamenti di tipo enzimatico al fine di agevolare la fase di idrolisi della sostanza organica che costituisce uno degli stadi limitanti la resa del processo di produzione di biogas. A tal fine sono stati caratterizzati e selezionati alcuni preparati enzimatici commerciali indicati per il trattamento di matrici ligno-cellulosiche per le loro attività carboidrasiche come quella amilasica, xilanasica e pectinasica. Gli esperimenti hanno comportato la necessità di fare un’approfondita analisi merceologica della FORSU al fine di poter sviluppare un sistema modello da utilizzare per le prove di laboratorio. L’azione enzimatica è stata verificata sulla FORSU modello sottoposta a vari pre-trattamenti termici e meccanici in cui l’azione idrolitica è stata maggiormente osservata per quelle frazioni tipicamente di origine amidacea. I risultati di laboratorio sono stati poi utilizzati per valutare un’estrapolazione industriale del pre-trattamento su un impianto che tratta FORSU per produrre biogas attraverso un processo di fermentazione industriale dry in biocella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il Cloud Storage è un modello di conservazione dati su computer in rete, dove i dati stessi sono memorizzati su molteplici server, reali e/o virtuali, generalmente ospitati presso strutture di terze parti o su server dedicati. Tramite questo modello è possibile accedere alle informazioni personali o aziendali, siano essi video, fotografie, musica, database o file in maniera “smaterializzata”, senza conoscere l’ubicazione fisica dei dati, da qualsiasi parte del mondo, con un qualsiasi dispositivo adeguato. I vantaggi di questa metodologia sono molteplici: infinita capacita’ di spazio di memoria, pagamento solo dell’effettiva quantità di memoria utilizzata, file accessibili da qualunque parte del mondo, manutenzione estremamente ridotta e maggiore sicurezza in quanto i file sono protetti da furto, fuoco o danni che potrebbero avvenire su computer locali. Google Cloud Storage cade in questa categoria: è un servizio per sviluppatori fornito da Google che permette di salvare e manipolare dati direttamente sull’infrastruttura di Google. In maggior dettaglio, Google Cloud Storage fornisce un’interfaccia di programmazione che fa uso di semplici richieste HTTP per eseguire operazioni sulla propria infrastruttura. Esempi di operazioni ammissibili sono: upload di un file, download di un file, eliminazione di un file, ottenere la lista dei file oppure la dimensione di un dato file. Ogniuna di queste richieste HTTP incapsula l’informazione sul metodo utilizzato (il tipo di richista, come GET, PUT, ...) e un’informazione di “portata” (la risorsa su cui effettuare la richiesta). Ne segue che diventa possibile la creazione di un’applicazione che, facendo uso di queste richieste HTTP, fornisce un servizio di Cloud Storage (in cui le applicazioni salvano dati in remoto generalmene attraverso dei server di terze parti). In questa tesi, dopo aver analizzato tutti i dettagli del servizio Google Cloud Storage, è stata implementata un’applicazione, chiamata iHD, che fa uso di quest’ultimo servizio per salvare, manipolare e condividere dati in remoto (nel “cloud”). Operazioni comuni di questa applicazione permettono di condividere cartelle tra più utenti iscritti al servizio, eseguire operazioni di upload e download di file, eliminare cartelle o file ed infine creare cartelle. L’esigenza di un’appliazione di questo tipo è nata da un forte incremento, sul merato della telefonia mobile, di dispositivi con tecnologie e con funzioni sempre più legate ad Internet ed alla connettività che esso offre. La tesi presenta anche una descrizione delle fasi di progettazione e implementazione riguardanti l’applicazione iHD. Nella fase di progettazione si sono analizzati tutti i requisiti funzionali e non funzionali dell’applicazione ed infine tutti i moduli da cui è composta quest’ultima. Infine, per quanto riguarda la fase di implementazione, la tesi presenta tutte le classi ed i rispettivi metodi presenti per ogni modulo, ed in alcuni casi anche come queste classi sono state effettivamente implementate nel linguaggio di programmazione utilizzato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scopo di questa tesi di laurea sperimentale (LM) è stata la produzione di geopolimeri a base metacaolinitica con una porosità controllata. Le principali tematiche affrontate sono state: -la produzione di resine geopolimeriche, studiate per individuare le condizioni ottimali ed ottenere successivamente geopolimeri con un’ultra-macro-porosità indotta; -lo studio dell’effetto della quantità dell’acqua di reazione sulla micro- e meso-porosità intrinseche della struttura geopolimerica; -la realizzazione di schiume geopolimeriche, aggiungendo polvere di Si, e lo studio delle condizioni di foaming in situ; -la preparazione di schiume ceramiche a base di allumina, consolidate per via geopolimerica. Le principali proprietà dei campioni così ottenuti (porosità, area superficiale specifica, grado di geopolimerizzazione, comportamento termico, capacità di scambio ionico sia delle resine geopolimeriche che delle schiume, ecc.) sono state caratterizzate approfonditamente. Le principali evidenze sperimentali riscontrate sono: A)Effetto dell’acqua di reazione: la porosità intrinseca del geopolimero aumenta, sia come quantità che come dimensione, all’aumentare del contenuto di acqua. Un’eccessiva diluizione porta ad una minore formazione di nuclei con l’ottenimento di nano-precipitati di maggior dimensioni. Nelle schiume geopolimeriche, l’acqua gioca un ruolo fondamentale nell’espansione: deve essere presente un equilibrio ottimale tra la pressione esercitata dall’H2 e la resistenza opposta dalla parete del poro in formazione. B)Effetto dell’aggiunta di silicio metallico: un elevato contenuto di silicio influenza negativamente la reazione di geopolimerizzazione, in particolare quando associato a più elevate temperature di consolidamento (80°C), determinando una bassa geopolimerizzazione nei campioni. C)Effetto del grado di geopolimerizzazione e della micro- e macro-struttura: un basso grado di geopolimerizzazione diminuisce l’accessibilità della matrice geopolimerica determinata per scambio ionico e la porosità intrinseca determinata per desorbimento di N2. Il grado di geopolimerizzazione influenza anche le proprietà termiche: durante i test dilatometrici, se il campione non è completamente geopolimerizzato, si ha un’espansione che termina con la sinterizzazione e nell’intervallo tra i 400 e i 600 °C è presente un flesso, attribuibile alla transizione vetrosa del silicato di potassio non reagito. Le prove termiche evidenziano come la massima temperatura di utilizzo delle resine geopolimeriche sia di circa 800 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il presente elaborato si inserisce all’interno del progetto THESEUS (Innovative Technologies for safer European coasts in a changing climate), nella sezione denominata “work package 3”. I principali obiettivi di questo studio sono: 1) valutare l’impatto delle differenti strategie di difesa di zone intertidale dell’ecosistema spiaggia lungo il litorale dell’Emilia-Romagna; 2) analizzare nel dettaglio la struttura e la distribuzione del microbivalve Lentidium mediterraneum, tipico do questa zona, per valutarne un eventuale utilizzo nei progetti di monitoraggio e analisi degli impatti antropici legati alle variazioni morfodinamiche. Sono state scelte tre spiagge: Cesenatico, in cui da molti anni sono presenti strutture di difesa rigide della spiaggia, e dove ogni anno, al termine della stagione estiva, vengono costruite delle dune artificiali, rimosse a fine primavera, per proteggere gli stabilimenti balneari dalle mareggiate invernali; Cervia, in cui sono presenti solo le dune artificiali stagionali; Lido di Dante, considerato naturale per l’assenza di strutture di protezione. Il campionamento è stato effettuato in 3 tempi per ciascun sito. 2 tempi senza le dune artificiali, e uno con. Per ciascun sito e ciascun tempo sono stati replicati 3 transetti, random, per ogni livello di marea. Sono stati prelevati campioni per un totale di 14879 individui e identificati 40 taxa. Da questi sono stati estratti gli esemplari di Lentidium mediterraneum da analizzare. Le analisi uni e multivariate effettuate sull’intera comunità hanno messo in evidenza differenze fra le spiagge, fra i tempi di campionamento e i livelli di marea. Si è, inoltre evidenziato come tali differenze fossero in parte dovute alle densità di Lentidium mediterraneum. Oltre alle analisi classiche nel presente lavoro di tesi è stato proposto un modello concettuale di trasporto del Lentidium mediterraneum che se validato confermerebbe la possibilità di utilizzare il microbivalve come “proxy biologico”.