25 resultados para image analysis, gesture recognition, body recognition, computer vision, sistemi multimediali
Resumo:
Questa tesi si inserisce nel filone di ricerca dell'elaborazione di dati 3D, e in particolare nella 3D Object Recognition, e delinea in primo luogo una panoramica sulle principali rappresentazioni strutturate di dati 3D, le quali rappresentano una prerogativa necessaria per implementare in modo efficiente algoritmi di processing di dati 3D, per poi presentare un nuovo algoritmo di 3D Keypoint Detection che è stato sviluppato e proposto dal Computer Vision Laboratory dell'Università di Bologna presso il quale ho effettuato la mia attività di tesi.
Resumo:
Analisi strutturale dell’ala di un UAV (velivolo senza pilota a bordo), sviluppata usando varie metodologie: misurazioni sperimentali statiche e dinamiche, e simulazioni numeriche con l’utilizzo di programmi agli elementi finiti. L’analisi statica è stata a sua volta portata avanti seguendo due differenti metodi: la classica e diretta determinazione degli spostamenti mediante l’utilizzo di un catetometro e un metodo visivo, basato sull’elaborazione di immagini e sviluppato appositamente a tale scopo in ambiente Matlab. Oltre a ciò è stata svolta anche una analisi FEM volta a valutare l’errore che si ottiene affrontando il problema con uno studio numerico. Su tale modello FEM è stata svolta anche una analisi di tipo dinamico con lo scopo di confrontare tali dati con i dati derivanti da un test dinamico sperimentale per ottenere informazioni utili per una seguente possibile analisi aeroelastica.
Resumo:
Questa tesi si propone di innovare lo stato dell’arte dei metodi di analisi dell’eterogeneità in lesioni polmonari attualmente utilizzati, affiancando l’analisi funzionale (emodinamica) a quella morfologica, grazie allo sviluppo di nuove feature specifiche. Grazie alla collaborazione tra il Computer Vision Group (CVG) dell’Università di Bologna e l’Unità Operativa di Radiologia dell’IRCCS-IRST di Meldola (Istituto di Ricovero e Cura a Carattere Scientifico – Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori), è stato possibile analizzare un adeguato numero di casi reali di pazienti affetti da lesioni polmonari primitive, effettuando un’analisi dell’eterogeneità sia su sequenze di immagini TC baseline sia contrast-enhanced, consentendo quindi un confronto tra eterogeneità morfologica e funzionale. I risultati ottenuti sono infine discussi sulla base del confronto con le considerazioni di natura clinica effettuate in cieco da due esperti radiologi dell’IRCCS-IRST.
Resumo:
L’elaborato di tesi, che rientra nell’ambito di un progetto di collaborazione tra l’equipe del laboratorio ICM “Silvio Cavalcanti”, coordinato dal professor Giordano, e il CVG (Computer Vision Group) coordinato dal professor Bevilacqua, mira alla messa a punto di un sistema di misura quantitativa di segnali fluorescenti, tramite l’elaborazione di immagini acquisite in microscopia ottica.
Resumo:
Notizie riguardanti scandali relativi al utilizzo inappropriato di contrassegni per disabili sono all’ordine del giorno. Situazioni meno popolari dal punto di vista mediatico, ma altrettanto gravi a livello sociale coinvolgono tutti quegli individui che si prodigano a falsificare contrassegni oppure ad utilizzarli anche in mancanza del disabile, eventualmente anche successivamente al decesso del medesimo. Tutto questo va inevitabilmente a discapito di tutti coloro che hanno reale diritto e necessità di usufruire delle agevolazioni. Lo scopo di questa tesi è quindi quello di illustrare un possibile sistema per contrastare e possibilmente debellare questo malcostume diffusissimo in Italia. La proposta è quella di dematerializzare il pass cartaceo sostituendolo con un equiva- lente elettronico, temporaneo e associato non più ad una targa, ma all’individuo stesso. Per farlo si ricorrerà all’uso di tecniche di autenticazione attraverso sistemi biometrici, quali il riconoscimento facciale, vocale, di espressioni facciali e gestures.
Resumo:
Nell'elaborato viene introdotto l'ambito della Computer Vision e come l'algoritmo SIFT si inserisce nel suo panorama. Viene inoltre descritto SIFT stesso, le varie fasi di cui si compone e un'applicazione al problema dell'object recognition. Infine viene presentata un'implementazione di SIFT in linguaggio Python creata per ottenere un'applicazione didattica interattiva e vengono mostrati esempi di questa applicazione.
Resumo:
Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.
Resumo:
The job of a historian is to understand what happened in the past, resorting in many cases to written documents as a firsthand source of information. Text, however, does not amount to the only source of knowledge. Pictorial representations, in fact, have also accompanied the main events of the historical timeline. In particular, the opportunity of visually representing circumstances has bloomed since the invention of photography, with the possibility of capturing in real-time the occurrence of a specific events. Thanks to the widespread use of digital technologies (e.g. smartphones and digital cameras), networking capabilities and consequent availability of multimedia content, the academic and industrial research communities have developed artificial intelligence (AI) paradigms with the aim of inferring, transferring and creating new layers of information from images, videos, etc. Now, while AI communities are devoting much of their attention to analyze digital images, from an historical research standpoint more interesting results may be obtained analyzing analog images representing the pre-digital era. Within the aforementioned scenario, the aim of this work is to analyze a collection of analog documentary photographs, building upon state-of-the-art deep learning techniques. In particular, the analysis carried out in this thesis aims at producing two following results: (a) produce the date of an image, and, (b) recognizing its background socio-cultural context,as defined by a group of historical-sociological researchers. Given these premises, the contribution of this work amounts to: (i) the introduction of an historical dataset including images of “Family Album” among all the twentieth century, (ii) the introduction of a new classification task regarding the identification of the socio-cultural context of an image, (iii) the exploitation of different deep learning architectures to perform the image dating and the image socio-cultural context classification.
Resumo:
Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.
Resumo:
This study investigated the coralligenous reefs' benthic assemblages at 6 sites off Chioggia, in the northern Adriatic Sea, comparing 2 different methods of analysis of photographic samples: the grid method (overlapping a grid of 400 cells) and the random point method (random distribution of 100 points on the photo). For the first method, taxonomic recognition and the percentage coverage estimations were performed manually using photoQuad software. In the second, CoralNet semi-automated web-based annotation system was applied. This allows for assisted and supervised identification, the success rate of which gradually improves after initial software training. The results obtained with the two methods of analysing photographic samples are slightly different. The random points method gives lower species richness values and some differences in coverage estimations; all of this is reflected in the calculation of the biotic index. NAMBER values are significantly lower with the random points method and provide locally different classifications (3 out of 6 sites). However, the results obtained with the two methods are closely related to each other and depict a similar spatial trend. These results rise caution in applying different, albeit similar, methods in the analysis of benthic assemblages aimed to environmental quality assessment.