24 resultados para Scalable Intelligence
Resumo:
Le informazioni di tipo geografico caratterizzano più dell'80% dei dati utilizzati nei processi decisionali di ogni grande azienda e la loro pervasività è in costante aumento. La Location Intelligence è un insieme di strumenti, metodologie e processi nati con l'obiettivo di analizzare e comprendere a pieno il patrimonio informativo presente in questi dati geolocalizzati. In questo progetto di tesi si è sviluppato un sistema completo di Location Intelligence in grado di eseguire analisi aggregate dei dati georeferenziati prodotti durante l'operatività quotidiana di una grande azienda multiservizi italiana. L’immediatezza dei report grafici e le comparazioni su serie storiche di diverse sorgenti informative integrate generano un valore aggiunto derivante dalle correlazioni individuabili solo grazie a questa nuova dimensione di analisi. In questo documento si illustrano tutte le fasi caratterizzanti del progetto, dalla raccolta dei requisiti utente fino all’implementazione e al rilascio dell’applicativo, concludendo con una sintesi delle potenzialità di analisi generate da questa specifica applicazione e ai suoi successivi sviluppi.
Resumo:
Analisi degli scenari applicativi in ambiente Home Manager e progettazione, implementazione e collaudo di alcune delle funzionalità proposte.
Resumo:
“La Business Intelligence per il monitoraggio delle vendite: il caso Ducati Motor Holding”. L’obiettivo di questa tesi è quello di illustrare cos’è la Business Intelligence e di mostrare i cambiamenti verificatisi in Ducati Motor Holding, in seguito alla sua adozione, in termini di realizzazione di report e dashboard per il monitoraggio delle vendite. L’elaborato inizia con una panoramica generale sulla storia e gli utilizzi della Business Intelligence nella quale vengono toccati i principali fondamenti teorici: Data Warehouse, data mining, analisi what-if, rappresentazione multidimensionale dei dati, costruzione del team di BI eccetera. Si proseguirà mediante un focus sui Big Data convogliando l’attenzione sul loro utilizzo e utilità nel settore dell’automotive (inteso nella sua accezione più generica e cioè non solo come mercato delle auto, ma anche delle moto), portando in questo modo ad un naturale collegamento con la realtà Ducati. Si apre così una breve overview sull’azienda descrivendone la storia, la struttura commerciale attraverso la quale vengono gestite le vendite e la gamma dei prodotti. Dal quarto capitolo si entra nel vivo dell’argomento: la Business Intelligence in Ducati. Si inizia descrivendo le fasi che hanno fino ad ora caratterizzato il progetto di Business Analytics (il cui obiettivo è per l'appunto introdurre la BI i azienda) per poi concentrarsi, a livello prima teorico e poi pratico, sul reporting sales e cioè sulla reportistica basata sul monitoraggio delle vendite.
Resumo:
I Big Data stanno guidando una rivoluzione globale. In tutti i settori, pubblici o privati, e le industrie quali Vendita al dettaglio, Sanità, Media e Trasporti, i Big Data stanno influenzando la vita di miliardi di persone. L’impatto dei Big Data è sostanziale, ma così discreto da passare inosservato alla maggior parte delle persone. Le applicazioni di Business Intelligence e Advanced Analytics vogliono studiare e trarre informazioni dai Big Data. Si studia il passaggio dalla prima alla seconda, mettendo in evidenza aspetti simili e differenze.
Resumo:
Lo scopo del presente elaborato è ottenere dati grezzi dai maggiori offerwalls affinché si renda possibile elaborarli ed analizzarli per metterli a disposizione delle figure che si occupano di account management di un potenziale Ad Network quale è MyAppFree. Il primo Ad Network competitor a venire integrato nel presente tool di Business Intelligence è OfferToro, seguito da AdGem, il quale è attualmente in fase di integrazione. Prima di presentare i risultati del tool, a cui è stato dedicato l’ultimo capitolo dell’elaborato, sono stati approfonditi ed analizzati ampiamente i concetti fondamentali per la comprensione del progetto insieme agli strumenti utilizzati per la costituzione dell’architettura software. Successivamente, viene presentata l'architettura dei singoli microservizi oltre a quella sistemistica generale, la quale tratta come le parti che compongono iBiT, interagiscono tra loro. Infine, l’ultima parte della trattazione è dedicata al funzionamento del Front End Side per la figura account manager, che rappresenta l’utente finale del progetto. Unita alle analisi dei risultati ottenuti tramite una fase di benchmark testing, metrica che misura un insieme ripetibile di risultati quantificabili che serve come punto di riferimento perché prodotti e servizi possano essere confrontati. Lo scopo dei risultati dei test di benchmark è quello di confrontare le versioni presenti e future del software tramite i rispettivi benchmark.
Resumo:
This thesis examines the state of audiovisual translation (AVT) in the aftermath of the COVID-19 emergency, highlighting new trends with regards to the implementation of AI technologies as well as their strengths, constraints, and ethical implications. It starts with an overview of the current AVT landscape, focusing on future projections about its evolution and its critical aspects such as the worsening working conditions lamented by AVT professionals – especially freelancers – in recent years and how they might be affected by the advent of AI technologies in the industry. The second chapter delves into the history and development of three AI technologies which are used in combination with neural machine translation in automatic AVT tools: automatic speech recognition, speech synthesis and deepfakes (voice cloning and visual deepfakes for lip syncing), including real examples of start-up companies that utilize them – or are planning to do so – to localize audiovisual content automatically or semi-automatically. The third chapter explores the many ethical concerns around these innovative technologies, which extend far beyond the field of translation; at the same time, it attempts to revindicate their potential to bring about immense progress in terms of accessibility and international cooperation, provided that their use is properly regulated. Lastly, the fourth chapter describes two experiments, testing the efficacy of the currently available tools for automatic subtitling and automatic dubbing respectively, in order to take a closer look at their perks and limitations compared to more traditional approaches. This analysis aims to help discerning legitimate concerns from unfounded speculations with regards to the AI technologies which are entering the field of AVT; the intention behind it is to humbly suggest a constructive and optimistic view of the technological transformations that appear to be underway, whilst also acknowledging their potential risks.
Resumo:
The usage of version control systems and the capabilities of storing the source code in public platforms such as GitHub increased the number of passwords, API Keys and tokens that can be found and used causing a massive security issue for people and companies. In this project, SAP's secret scanner Credential Digger is presented. How it can scan repositories to detect hardcoded secrets and how it manages to filter out the false positives between them. Moreover, how I have implemented the Credential Digger's pre-commit hook. A performance comparison between three different implementations of the hook based on how it interacts with the Machine Learning model is presented. This project also includes how it is possible to use already detected credentials to decrease the number false positive by leveraging the similarity between leaks by using the Bucket System.
Resumo:
The idea of Grid Computing originated in the nineties and found its concrete applications in contexts like the SETI@home project where a lot of computers (offered by volunteers) cooperated, performing distributed computations, inside the Grid environment analyzing radio signals trying to find extraterrestrial life. The Grid was composed of traditional personal computers but, with the emergence of the first mobile devices like Personal Digital Assistants (PDAs), researchers started theorizing the inclusion of mobile devices into Grid Computing; although impressive theoretical work was done, the idea was discarded due to the limitations (mainly technological) of mobile devices available at the time. Decades have passed, and now mobile devices are extremely more performant and numerous than before, leaving a great amount of resources available on mobile devices, such as smartphones and tablets, untapped. Here we propose a solution for performing distributed computations over a Grid Computing environment that utilizes both desktop and mobile devices, exploiting the resources from day-to-day mobile users that alternatively would end up unused. The work starts with an introduction on what Grid Computing is, the evolution of mobile devices, the idea of integrating such devices into the Grid and how to convince device owners to participate in the Grid. Then, the tone becomes more technical, starting with an explanation on how Grid Computing actually works, followed by the technical challenges of integrating mobile devices into the Grid. Next, the model, which constitutes the solution offered by this study, is explained, followed by a chapter regarding the realization of a prototype that proves the feasibility of distributed computations over a Grid composed by both mobile and desktop devices. To conclude future developments and ideas to improve this project are presented.
Resumo:
Un ambiente sempre più interconnesso per facilitare la condivisione di dati, lo sviluppo di strumenti sempre più ricettivi, l’utilizzo di algoritmi sempre più mirati ed efficaci nel selezionare le giuste informazioni sono alcuni dei fattori chiave che hanno consentito e tuttora consentono la crescita, la gestione, il riutilizzo e la diffusione del patrimonio conoscitivo a disposizione delle organizzazioni. Il continuo aumento di risorse informatiche ha indotto le organizzazioni a rivedere il ruolo svolto dalla Business Intelligence, arricchendolo di strumenti e procedure nuove e creando ulteriori figure professionali. L’obiettivo di questo elaborato è fornire una panoramica della business intelligence, della sua origine e della rilevanza e utilità in ambito aziendale. Nel primo capitolo si tratta della disciplina della Business Intelligence, in particolare definizione, cenni storici e differenza con la Business Analytics. Si descrivono successivamente i sistemi informativi e i loro componenti per finire con l’architettura di una soluzione di BI. Nel secondo capitolo, si effettua una panoramica sui software di Business Intelligence sul mercato, dopo di che si presenta Microsoft Power BI di Microsoft, in particolare funzionalità e caratteristiche. Il terzo capitolo è relativo al progetto effettuato durante il periodo di tirocinio: l’implementazione di nuove funzionalità e analisi su un software BI sviluppato dall’azienda ospitante.