17 resultados para NoSQL
Resumo:
I big data sono caratterizzati dalle ben note 4v: volume, velocità, veracità e varietà. Quest'ultima risulta di importanza critica nei sistemi schema-less, dove il concetto di schema non è rigido. In questo contesto rientrano i database NoSQL, i quali offrono modelli dati diversi dal classico modello dati relazionale, ovvero: documentale, wide-column, grafo e key-value. Si parla di multistore quando ci si riferisce all'uso di database con modelli dati diversi che vengono esposti con un'unica interfaccia di interrogazione, sia per sfruttare caratteristiche di un modello dati che per le maggiori performance dei database NoSQL in contesti distribuiti. Fare analisi sui dati all'interno di un multistore risulta molto più complesso: i dati devono essere integrati e va ripristinata la consistenza. A questo scopo nasce la necessità di approcci più soft, chiamati pay-as-you-go: l'integrazione è leggera e incrementale, aggira la complessità degli approcci di integrazione tradizionali e restituisce risposte best-effort o approssimative. Seguendo tale filosofia, nasce il concetto di dataspace come rappresentazione logica e di alto livello dei dataset disponibili. Obiettivo di questo lavoro tesi è studiare, progettare e realizzare una modalità di interrogazione delle sorgenti dati eterogenee in contesto multistore con l'intento di fare analisi situazionali, considerando le problematiche di varietà e appoggiandosi all'integrazione fornita dal dataspace. Lo scopo finale è di sviluppare un prototipo che esponga un'interfaccia per interrogare il dataspace con la semantica GPSJ, ovvero la classe di query più comune nelle applicazioni OLAP. Un'interrogazione nel dataspace dovrà essere tradotta in una serie di interrogazioni nelle sorgenti e, attraverso un livello middleware, i risultati parziali dovranno essere integrati tra loro in modo che il risultato dell'interrogazione sia corretto e allo stesso tempo completo.
Resumo:
Gli obiettivi di questi tesi sono lo studio comparativo di alcuni DBMS non relazionali e il confronto di diverse soluzioni di modellazione logica e fisica per database non relazionali. Utilizzando come sistemi di gestione due DBMS Document-based non relazionali, MongoDB e CouchDB, ed un DBMS relazionale, Oracle, sarà effettuata un’analisi di diverse soluzione di modellazione logica dei dati in database documentali e uno studio mirato alla scelta degli attributi sui quali costruire indici. In primo luogo verrà definito un semplice caso di studio su cui effettuare i confronto, basato su due entità in relazione 1:N, sulle quali sarà costruito un opportuno carico di lavoro. Idatabase non relazionali sono schema-less, senza schema fisso, ed esiste una libertà maggiore di modellazione. In questo lavoro di tesi i dati verranno modellati secondo le tecniche del Referencing ed Embedding che consistono rispettivamente nell’inserimento di una chiave (riferimento) oppure di un intero sotto-documento (embedding) all’interno di un documento per poter esprimere il concetto di relazione tra diverse entità. Per studiare l’opportunità di indicizzare un attributo, ciascuna entità sarà poi composta da due triplette uguali di attributi definiti con differenti livelli di selettività, con la differenza che su ciascun attributo della seconda sarà costruito un indice. Il carico di lavoro sarà costituito da query definite in modo da poter testare le diverse modellazioni includendo anche predicati di join che non sono solitamente contemplati in modelli documentali. Per ogni tipo di database verranno eseguite le query e registrati i tempi, in modo da poter confrontare le performance dei diversi DBMS sulla base delle operazioni CRUD.