18 resultados para Network anomaly detection
Resumo:
Correctness of information gathered in production environments is an essential part of quality assurance processes in many industries, this task is often performed by human resources who visually take annotations in various steps of the production flow. Depending on the performed task the correlation between where exactly the information is gathered and what it represents is more than often lost in the process. The lack of labeled data places a great boundary on the application of deep neural networks aimed at object detection tasks, moreover supervised training of deep models requires a great amount of data to be available. Reaching an adequate large collection of labeled images through classic techniques of data annotations is an exhausting and costly task to perform, not always suitable for every scenario. A possible solution is to generate synthetic data that replicates the real one and use it to fine-tune a deep neural network trained on one or more source domains to a different target domain. The purpose of this thesis is to show a real case scenario where the provided data were both in great scarcity and missing the required annotations. Sequentially a possible approach is presented where synthetic data has been generated to address those issues while standing as a training base of deep neural networks for object detection, capable of working on images taken in production-like environments. Lastly, it compares performance on different types of synthetic data and convolutional neural networks used as backbones for the model.
Resumo:
Our objective for this thesis work was the deployment of a Neural Network based approach for video object detection on board a nano-drone. Furthermore, we have studied some possible extensions to exploit the temporal nature of videos to improve the detection capabilities of our algorithm. For our project, we have utilized the Mobilenetv2/v3SSDLite due to their limited computational and memory requirements. We have trained our networks on the IMAGENET VID 2015 dataset and to deploy it onto the nano-drone we have used the NNtool and Autotiler tools by GreenWaves. To exploit the temporal nature of video data we have tried different approaches: the introduction of an LSTM based convolutional layer in our architecture, the introduction of a Kalman filter based tracker as a postprocessing step to augment the results of our base architecture. We have obtain a total improvement in our performances of about 2.5 mAP with the Kalman filter based method(BYTE). Our detector run on a microcontroller class processor on board the nano-drone at 1.63 fps.
Resumo:
Il rilevamento di intrusioni nel contesto delle pratiche di Network Security Monitoring è il processo attraverso cui, passando per la raccolta e l'analisi di dati prodotti da una o più fonti di varia natura, (p.e. copie del traffico di rete, copie dei log degli applicativi/servizi, etc..) vengono identificati, correlati e analizzati eventi di sicurezza con l'obiettivo di rilevare potenziali tenativi di compromissione al fine di proteggere l'asset tecnologico all'interno di una data infrastruttura di rete. Questo processo è il prodotto di una combinazione di hardware, software e fattore umano. Spetta a quest'ultimo nello specifico il compito più arduo, ovvero quello di restare al passo con una realtà in continua crescita ed estremamente dinamica: il crimine informatico. Spetta all'analista filtrare e analizzare le informazioni raccolte in merito per contestualizzarle successivamente all'interno della realta che intende proteggere, con il fine ultimo di arricchire e perfezionare le logiche di rilevamento implementate sui sistemi utilizzati. È necessario comprendere come il mantenimento e l'aggiornamento di questi sistemi sia un'attività che segue l'evolversi delle tecnologie e delle strategie di attacco. Un suo svolgimento efficacie ed efficiente risulta di primaria importanza per consentire agli analisti di focalizzare le proprie risorse sulle attività di investigazione di eventi di sicurezza, ricerca e aggiornamento delle logiche di rilevamento, minimizzando quelle ripetitive, "time consuming", e potenzialmente automatizzabili. Questa tesi ha come obiettivo quello di presentare un possibile approccio ad una gestione automatizzata e centralizzata di sistemi per il rilevamento delle intrusioni, ponendo particolare attenzione alle tecnologie IDS presenti sul panorama open source oltre a rapportare tra loro gli aspetti di scalabilità e personalizzazione che ci si trova ad affrontare quando la gestione viene estesa ad infrastrutture di rete eterogenee e distribuite.