18 resultados para NUMERICAL METHODS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lateral cyclic loaded structures in granular soils can lead to an accumulation of irreversible strains by changing their mechanical response (densification) and forming a closed convective cell in the upper layer of the bedding. In the present thesis the convective cell dimension, formation and grain migration inside this closed volume have been studied and presented in relation to structural stiffness and different loads. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Modelling large soil deformation turns out to be difficult, using mesh-based methods. Consequently, a mesh-free approach (DEM) was chosen in order to investigate the granular flow with the aim of extracting interesting micromechanical information. In both the numerical and experimental analyses the effect of different loading magnitudes and different dimensions of the vertical element were considered. The main results regarded the different development, shape and dimensions of the convection cell and the surface settlements. Moreover, the Discrete Element Method has proven to give satisfactory results in the modelling of large deformation phenomena such as the ratcheting convective cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing in resolution of numerical weather prediction models has allowed more and more realistic forecasts of atmospheric parameters. Due to the growing variability into predicted fields the traditional verification methods are not always able to describe the model ability because they are based on a grid-point-by-grid-point matching between observation and prediction. Recently, new spatial verification methods have been developed with the aim of show the benefit associated to the high resolution forecast. Nested in among of the MesoVICT international project, the initially aim of this work is to compare the newly tecniques remarking advantages and disadvantages. First of all, the MesoVICT basic examples, represented by synthetic precipitation fields, have been examined. Giving an error evaluation in terms of structure, amplitude and localization of the precipitation fields, the SAL method has been studied more thoroughly respect to the others approaches with its implementation in the core cases of the project. The verification procedure has concerned precipitation fields over central Europe: comparisons between the forecasts performed by the 00z COSMO-2 model and the VERA (Vienna Enhanced Resolution Analysis) have been done. The study of these cases has shown some weaknesses of the methodology examined; in particular has been highlighted the presence of a correlation between the optimal domain size and the extention of the precipitation systems. In order to increase ability of SAL, a subdivision of the original domain in three subdomains has been done and the method has been applied again. Some limits have been found in cases in which at least one of the two domains does not show precipitation. The overall results for the subdomains have been summarized on scatter plots. With the aim to identify systematic errors of the model the variability of the three parameters has been studied for each subdomain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the energy transition, the acquisition of proper knowledge of fundamental aspects characterizing the use of alternative fuels is paramount as well as the development of optimized know-how and technologies. In this sense, the use of hydrogen has been indicated as a promising route for decarbonization at the end-users stage in the energy supply chain. However, the elevated reactivity and the low-density at atmospheric conditions of hydrogen pose new challenges. Among the others, the dilution of hydrogen with carbon dioxide from carbon capture and storage systems represents a possible route. However, the interactions between these species have been poorly studied so far. For these reasons, this thesis, in collaboration between the University of Bologna and Technische Universität Bergakademie of Freiberg in Saxony (Germany), investigates the laminar flame of hydrogen-based premixed gas with the dilution of carbon dioxide. An experimental system, called a heat flux burner, was adopted ad different operating conditions. The presence of the cellularity phenomenon, forming the so-called cellular flame, was observed and analysed. Theoretical and visual methods have allowed for the characterization of the investigated flames, opening new alternatives for sustainable energy production via hydrogen transformation.