20 resultados para Database application
Resumo:
Nella tesi, inizialmente, viene introdotto il concetto di Big Data, descrivendo le caratteristiche principali, il loro utilizzo, la provenienza e le opportunità che possono apportare. Successivamente, si sono spiegati i motivi che hanno portato alla nascita del movimento NoSQL, come la necessità di dover gestire i Big Data pur mantenendo una struttura flessibile nel tempo. Inoltre, dopo un confronto con i sistemi tradizionali, si è passati al classificare questi DBMS in diverse famiglie, accennando ai concetti strutturali sulle quali si basano, per poi spiegare il funzionamento. In seguito è stato descritto il database MongoDB orientato ai documenti. Sono stati approfonditi i dettagli strutturali, i concetti sui quali si basa e gli obbiettivi che si pone, per poi andare ad analizzare nello specifico importanti funzioni, come le operazioni di inserimento e cancellazione, ma anche il modo di interrogare il database. Grazie alla sue caratteristiche che lo rendono molto performante, MonogDB, è stato utilizzato come supporto di base di dati per la realizzazione di un applicazione web che permette di mostrare la mappa della connettività urbana.
Resumo:
La tesi tratta una panoramica generale sui Time Series database e relativi gestori. Successivamente l'attenzione è focalizzata sul DBMS InfluxDB. Infine viene mostrato un progetto che implementa InfluxDB
Resumo:
This project is about retrieving data in range without allowing the server to read it, when the database is stored in the server. Basically, our goal is to build a database that allows the client to maintain the confidentiality of the data stored, despite all the data is stored in a different location from the client's hard disk. This means that all the information written on the hard disk can be easily read by another person who can do anything with it. Given that, we need to encrypt that data from eavesdroppers or other people. This is because they could sell it or log into accounts and use them for stealing money or identities. In order to achieve this, we need to encrypt the data stored in the hard drive, so that only the possessor of the key can easily read the information stored, while all the others are going to read only encrypted data. Obviously, according to that, all the data management must be done by the client, otherwise any malicious person can easily retrieve it and use it for any malicious intention. All the methods analysed here relies on encrypting data in transit. In the end of this project we analyse 2 theoretical and practical methods for the creation of the above databases and then we tests them with 3 datasets and with 10, 100 and 1000 queries. The scope of this work is to retrieve a trend that can be useful for future works based on this project.
Resumo:
Twitter is a highly popular social media which on one hand allows information transmission in real time and on the other hand represents a source of open access homogeneous text data. We propose an analysis of the most common self-reported COVID symptoms from a dataset of Italian tweets to investigate the evolution of the pandemic in Italy from the end of September 2020 to the end of January 2021. After manually filtering tweets actually describing COVID symptoms from the database - which contains words related to fever, cough and sore throat - we discuss usefulness of such filtering. We then compare our time series with the daily data of new hospitalisations in Italy, with the aim of building a simple linear regression model that accounts for the delay which is observed from the tweets mentioning individual symptoms to new hospitalisations. We discuss both the results and limitations of linear regression given that our data suggests that the relationship between time series of symptoms tweets and of new hospitalisations changes towards the end of the acquisition.
Resumo:
Gli obiettivi di questi tesi sono lo studio comparativo di alcuni DBMS non relazionali e il confronto di diverse soluzioni di modellazione logica e fisica per database non relazionali. Utilizzando come sistemi di gestione due DBMS Document-based non relazionali, MongoDB e CouchDB, ed un DBMS relazionale, Oracle, sarà effettuata un’analisi di diverse soluzione di modellazione logica dei dati in database documentali e uno studio mirato alla scelta degli attributi sui quali costruire indici. In primo luogo verrà definito un semplice caso di studio su cui effettuare i confronto, basato su due entità in relazione 1:N, sulle quali sarà costruito un opportuno carico di lavoro. Idatabase non relazionali sono schema-less, senza schema fisso, ed esiste una libertà maggiore di modellazione. In questo lavoro di tesi i dati verranno modellati secondo le tecniche del Referencing ed Embedding che consistono rispettivamente nell’inserimento di una chiave (riferimento) oppure di un intero sotto-documento (embedding) all’interno di un documento per poter esprimere il concetto di relazione tra diverse entità. Per studiare l’opportunità di indicizzare un attributo, ciascuna entità sarà poi composta da due triplette uguali di attributi definiti con differenti livelli di selettività, con la differenza che su ciascun attributo della seconda sarà costruito un indice. Il carico di lavoro sarà costituito da query definite in modo da poter testare le diverse modellazioni includendo anche predicati di join che non sono solitamente contemplati in modelli documentali. Per ogni tipo di database verranno eseguite le query e registrati i tempi, in modo da poter confrontare le performance dei diversi DBMS sulla base delle operazioni CRUD.