18 resultados para Data Acquisition
Resumo:
Privacy issues and data scarcity in PET field call for efficient methods to expand datasets via synthetic generation of new data that cannot be traced back to real patients and that are also realistic. In this thesis, machine learning techniques were applied to 1001 amyloid-beta PET images, which had undergone a diagnosis of Alzheimer’s disease: the evaluations were 540 positive, 457 negative and 4 unknown. Isomap algorithm was used as a manifold learning method to reduce the dimensions of the PET dataset; a numerical scale-free interpolation method was applied to invert the dimensionality reduction map. The interpolant was tested on the PET images via LOOCV, where the removed images were compared with the reconstructed ones with the mean SSIM index (MSSIM = 0.76 ± 0.06). The effectiveness of this measure is questioned, since it indicated slightly higher performance for a method of comparison using PCA (MSSIM = 0.79 ± 0.06), which gave clearly poor quality reconstructed images with respect to those recovered by the numerical inverse mapping. Ten synthetic PET images were generated and, after having been mixed with ten originals, were sent to a team of clinicians for the visual assessment of their realism; no significant agreements were found either between clinicians and the true image labels or among the clinicians, meaning that original and synthetic images were indistinguishable. The future perspective of this thesis points to the improvement of the amyloid-beta PET research field by increasing available data, overcoming the constraints of data acquisition and privacy issues. Potential improvements can be achieved via refinements of the manifold learning and the inverse mapping stages during the PET image analysis, by exploring different combinations in the choice of algorithm parameters and by applying other non-linear dimensionality reduction algorithms. A final prospect of this work is the search for new methods to assess image reconstruction quality.
Resumo:
Industrial companies, particularly those with induction motors and gearboxes as integral components of their systems, are utilizing Condition Monitoring (CM) systems more frequently in order to discover the need for maintenance in advance, as traditional maintenance only performs tasks when a failure has been identified. Utilizing a CM system is essential to boost productivity and minimize long-term failures that result in financial loss. The more exact and practical the CM system, the better the data analysis, which adds to a more precise maintenance forecast. This thesis project is a cooperation with PEI Vibration Monitoring s.r.l. to design and construct a low-cost vibrational condition monitoring system to check the health of induction motors and gearboxes automatically. Moreover, according to the company's request, such a system should have specs comparable to NI 9234, one of the company's standard Data Acquisition (DAQ) boards, but at a significantly cheaper price. Additionally, PEI VM Company has supplied all hardware and electronic components. The suggested CM system is capable of highprecision autonomous monitoring of induction motors and gearboxes, and it consists of a Raspberry Pi 3B and MCC 172 DAQ board.
Resumo:
As predictive maintenance becomes more and more relevant in industrial environment, the possible range of applications for this maintenance strategy grows. The progresses in components technology and their reduction in price, together with the late years' advances in machine learning and in computational power, are making the implementation of predictive maintenance possible in plants where it would have previously been unreasonably costly. This is leading major pharmaceutical industries to explore the possibility of the application of condition monitoring systems on progressively less and less critical equipment. The focus of this thesis is on the implementation of a system to gather vibrational data from the motors installed in a pre-existing machine using off-the-shelf components. The final goal for the system is to provide the necessary vibration data, in the form of frequency spectra, to a machine learning system developed by IMA Digital, which will be leveraging such data to predict possible upcoming faults and to give the final client all the information necessary to plan maintenance activity according to the estimated machine condition.