17 resultados para Cracking catalítico
Resumo:
The present work consists of a detailed numerical analysis of a 4-way joint made of a precast column and two partially precast beams. The structure has been previously built and experimentally analyzed through a series of cyclic loads at the Laboratory of Tests on Structures (Laboratorio di Prove su Strutture, La. P. S.) of the University of Bologna. The aim of this work is to design a 3D model of the joint and then apply the techniques of nonlinear finite element analysis (FEA) to computationally reproduce the behavior of the structure under cyclic loads. Once the model has been calibrated to correctly emulate the joint, it is possible to obtain new insights useful to understand and explain the physical phenomena observed in the laboratory and to describe the properties of the structure, such as the cracking patterns, the force-displacement and the moment-curvature relations, as well as the deformations and displacements of the various elements composing the joint.
Resumo:
The oxidative dehydrogenation (ODH) of n-butane is a promising way to synthetize butenes and 1,3-butadiene, currently produced by steam cracking or direct dehydrogenation of n-butane. The addition of oxygen as a reagent leads to the formation of water, a very stable by-product, which makes the process exothermic.In this work, the ODH of n- butane was investigate to selectively obtain butenes and 1,3-butadiene. Four catalysts based on metal oxides (V2O5, La2O3, CeO2 and TiO2) were mixed with Mg metallic powder and reduced at 650 °C for 5 h in 5% H2/Ar atmosphere, with the purpose of creating oxygen vacancies in the crystal lattice of the oxides. Subsequently, the effect of the Mg concentration, and thus the oxygen vacancies concentration, was studied. The titanium oxide-based catalysts were the most active, in terms of butane conversion and selectivity to butenes and 1,3 butadiene. Overall, this study shows that the formation of oxygen vacancies on metal oxides can be influenced by the addition of metallic Mg during the synthesis. In the case of TiO2, this leads to an increase on the activity compared to the untreated sample.