20 resultados para Computer Arithmetic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Navigazione chirurgica della rotula in-vivo durante artroplastica totale di ginocchio.Analisi cinematica dell'articolazione tibio-femorale e femoro-rotulea su un campione di pazienti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con Brain-Computer Interface si intende un collegamento diretto tra cervello e macchina, che essa sia un computer o un qualsiasi dispositivo esterno, senza l’utilizzo di muscoli. Grazie a sensori applicati alla cute del cranio i segnali cerebrali del paziente vengono rilevati, elaborati, classificati (per mezzo di un calcolatore) e infine inviati come output a un device esterno. Grazie all'utilizzo delle BCI, persone con gravi disabilità motorie o comunicative (per esempio malati di SLA o persone colpite dalla sindrome del chiavistello) hanno la possibilità di migliorare la propria qualità di vita. L'obiettivo di questa tesi è quello di fornire una panoramica nell'ambito dell'interfaccia cervello-computer, mostrando le tipologie esistenti, cercando di farne un'analisi critica sui pro e i contro di ogni applicazione, ponendo maggior attenzione sull'uso dell’elettroencefalografia come strumento per l’acquisizione dei segnali in ingresso all'interfaccia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C’è un crescente interesse nella comunità scientifica per l’applicazione delle tecniche della bioingegneria nel campo delle interfacce fra cervello e computer. Questo interesse nasce dal fatto che in Europa ci sono almeno 300.000 persone con paralisi agli arti inferiori, con una età media piuttosto bassa (31 anni), registrandosi circa 5.000 nuovi casi ogni anno, in maggioranza dovuti ad incidenti automobilistici. Tali lesioni traumatiche spinali inducono delle disfunzioni sensoriali a causa dell’interruzione tra gli arti e i centri sopraspinali. Per far fronte a questi problemi gli scienziati si sono sempre più proiettati verso un nuovo settore: il Brain Computer Interaction, ossia un ambito della ricerca volto alla costruzione di interfacce in grado di collegare direttamente il cervello umano ad un dispositivo elettrico come un computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa tesi si focalizza sullo studio dei modelli fisico-matematici attualmente in uso per la simulazione di fluidi al calcolatore con l’obiettivo di fornire nozioni di base e avanzate sull’utilizzo di tali metodi. La trattazione ha lo scopo di facilitare la comprensione dei principi su cui si fonda la simulazione di fluidi e rappresenta una base per la creazione di un proprio simulatore. E’ possibile studiare le caratteristiche di un fluido in movimento mediante due approcci diversi, l’approccio lagrangiano e l’approccio euleriano. Mentre l’approccio lagrangiano ha lo scopo di conoscere il valore, nel tempo, di una qualsiasi proprietà di ciascuna particella che compone il fluido, l’approccio euleriano, fissato uno o più punti del volume di spazio occupato da quest’ultimo, vuole studiare quello che accade, nel tempo, in quei punti. In particolare, questa tesi approfondisce lo studio delle equazioni di Navier-Stokes, approcciandosi al problema in maniera euleriana. La soluzione numerica del sistema di equazioni differenziali alle derivate parziali derivante dalle equazioni sopracitate, approssima la velocità del fluido, a partire dalla quale è possibile risalire a tutte le grandezze che lo caratterizzano. Attenzione viene riservata anche ad un modello facente parte dell’approccio semi-lagrangiano, il Lattice Boltzmann, considerato una via di mezzo tra i metodi puramente euleriani e quelli lagrangiani, che si basa sulla soluzione dell’equazione di Boltzmann mediante modelli di collisione di particelle. Infine, analogamente al metodo di Lattice Boltzmann, viene trattato il metodo Smoothed Particles Hydrodynamics, tipicamente lagrangiano, secondo il quale solo le proprietà delle particelle comprese dentro il raggio di una funzione kernel, centrata nella particella di interesse, influenzano il valore della particella stessa. Un resoconto pratico della teoria trattata viene dato mediante delle simulazioni realizzate tramite il software Blender 2.76b.