24 resultados para COMPACT ELLIPTIC GALAXY
Resumo:
The astrophysical context in which this thesis project lies concerns the comprehension of the mutual interaction between the accretion onto a Super Massive Black Hole (SMBH) and the Star Formation (SF), that take place in the host galaxy. This is one of the key topic of the modern extragalactic astrophysical research. Indeed, it is widely accepted that to understand the physics of a galaxy, the contribution of a possible central AGN must be taken into account. The aim of this thesis is the study of the physical processes of the nearby Seyfert galaxy NGC 34. This source was selected because of the wide collection of multiwavelength data available in the literature. In addition, recently, it has been observed with the Atacama Large Submillimeter/Millimeter Array (ALMA) in Band 9. This project is divided in two main parts: first of all, we reduced and analyzed the ALMA data, obtaining the continuum and CO(6-5) maps; then, we looked for a coherent explaination of NGC 34 physical characteristics. In particular, we focused on the ISM physics, in order to understand its properties in terms of density, chemical composition and dominant radiation field (SF or accretion). This work has been done through the analysis of the spectral distribution of several CO transitions as a function of the transition number (CO SLED), obtained joining the CO(6-5) line with other transitions available in the literature. More precisely, the observed CO SLED has been compared with ISM models, including Photo-Dissociation Regions (PDRs) and X-ray-Dominated Regions (XDRs). These models have been obtained through the state-of-the-art photoionization code CLOUDY. Along with the observed CO SLED, we have taken into account other physical properties of NGC 34, such as the Star Formation Rate (SFR), the gas mass and the X-ray luminosity.
Resumo:
Nel primo capitolo si riporta il principio del massimo per operatori ellittici. Sarà considerato, in un primo momento, l'operatore di Laplace e, successivamente, gli operatori ellittici del secondo ordine, per i quali si dimostrerà anche il principio del massimo di Hopf. Nel secondo capitolo si affronta il principio del massimo per operatori parabolici e lo si utilizza per dimostrare l'unicità delle soluzioni di problemi ai valori al contorno.
Resumo:
in questo lavoro di tesi verrà fornita dapprima una descrizione degli oggetti che andremo a studiare, e cioè i nuclei galattici attivi (AGN), con un richiamo alle strutture più importanti di cui si costituiscono i loro sottogruppi: Quasar e radiosorgenti. Saranno forniti i segni distintivi con cui poter riconoscere queste forme di sorgenti radio e verrà fornito un modello che consenta di concepire il ciclo vitale radiativo a cui sono destinati tali classi di radiogalassie. Si vedrà che il tipo di radiazione emessa è prevalentemente non termico, anch’essa vista come una loro caratteristica peculiare. Si darà quindi una descrizione di questo meccanismo di radiazione ,che corrisponde all’emissione di sincrotrone, e si analizzeranno, facendo riferimento a questa base teorica, dati provenienti da una particolare tipologia di radiosorgenti: le “High Frequency Peakers” (HFP) che, come si evince dal nome stesso, rappresentano delle sorgenti con uno spettro di radiazione con picco riscontrabile alle alte frequenze. Si studieranno i dati raccolti dal catalogo TGSS a 150MHz con la speranza di avere riscontri tali da poter confermare o rigettare il modello evolutivo che prendiamo in considerazione per descrivere il ciclo vitale di questa classe di oggetti astronomici e di cui daremo spiegazione nelle prossime pagine.
Resumo:
This Thesis work concerns the complementary study of the abundance of galaxy clusters and cosmic voids identified in cosmological simulations, at different redshifts. In particular, we focus our analyses on the combination of the cosmological constraints derived from these probes, which can be considered statistically independent, given the different aspects of Universe density field they map. Indeed, we aim at showing the orthogonality of the derived cosmological constraints and the resulting impressive power of the combination of these probes. To perform this combination we apply three newly implemented algorithms that allow us to combine independent probes. These algorithms represent a flexible and user-friendly tool to perform different techniques for probe combination and are implemented within the environment provided by the large set of free software C++/Python CosmoBolognaLib. All the new implemented codes provide simple and flexible tools that will be soon applied to the data coming from currently available and next-generation wide-field surveys to perform powerful combined cosmological analyses.
Resumo:
Electric cars are increasingly popular due to a transition of mobility towards more sustainable forms. From an increasingly green and pollution reduction perspective, there are more and more incentives that encourage customers to invest in electric cars. Using the Industrial Design and Structure (IDeS) research method, this project has the aim to design a new electric compact SUV suitable for all people who live in the city, and for people who move outside urban areas. In order to achieve the goal of developing a new car in the industrial automotive environment, the compact SUV segment was chosen because it is a vehicle very requested by the costumers and it is successful in the market due to its versatility. IDeS is a combination of innovative and advanced systematic approaches used to set up a new industrial project. The IDeS methodology is sequentially composed of Quality Function Deployment (QFD), Benchmarking (BM), Top-Flop analysis (TFA), Stylistic Design Engineering (SDE), Design for X, Prototyping, Testing, Budgeting, and Planning. The work is based on a series of steps and the sequence of these must be meticulously scheduled, imposing deadlines along the work. Starting from an analysis of the market and competitors, the study of the best and worst existing parameters in the competitor’s market is done, arriving at the idea of a better product in terms of numbers and innovation. After identifying the characteristics that the new car should have, the other step is the styling part, with the definition of the style and the design of the machine on a 3D CAD. Finally, it switches to the prototyping and testing phase to see if the product is able to work. Ultimately, intending to place the car on the market, it is essential to estimate the necessary budget for a possible investment in this project.
Resumo:
This thesis explores the X-ray nuclear and extended properties of the radio galaxy 3C 277.3, where a recent optical observation performed with the multi-unit spectroscopic explorer (MUSE) has revealed star-forming regions triggered by the propagation of non-thermal plasma in the intergalactic medium. This work aims to study the nuclear engine and its environment and, possibly, discover signatures of non-thermal plasma-gas interaction at high energies. 3C 277.3 was observed with the Chandra satellite five times from 2010 to 2014 for a total of about 200 ks. Data in the Chandra public archive were retrieved and analyzed. When necessary, the different pointings were combined to improve the signal-to-noise ratio. A detailed analysis of the Chandra image (obtained by combining all the observations) has revealed several emission regions. In addition to a bright nucleus, two jet knots and the northern hot spot were clearly detected by overlapping the X-ray data to a VLA map of the source at 1.4 GHz. An X-ray spectral analysis was performed for all these structures. Finally, the X-ray image was over-imposed on the MUSE data.
Resumo:
Gravitational lensing is a powerful tool to investigate the properties of the distribution of matter, be it barionic or dark. In this work we take advantage of Strong Gravitational Lensing to infer the properties of one of the galaxy-scale substructures that makes up the cluster MACSJ1206. It is relatively easy to model the morphology of the visible components of a galaxy, while the morphology of the dark matter distribution cannot be so easily constrained. Being sensitive to the whole mass, strong lensing provides a way to probe DM distribution, and this is the reason why it is the best tool to study the substructure. The goal of this work consists of performing an analysis of the substructure previously mentioned, an early type galaxy (ETG), by analyzing the highly magnified Einstein ring around it, in order to put stringent constraints on its matter distribution, that, for an ETG, is commonly well described by an isothermal profilele. This turns out to be interesting for three main different reasons. It is well known that galaxies in clusters are subject to interaction processes, both dynamic and hydrodynamic, that can significantly modify the distribution of matter within them. Therefore, finding a different profile from the one usually expected could be a sign that the galaxy has undergone processes that have changed its structure. Studying the mass distribution also means studying the dark matter component, which not only still presents great questions today, but which is also not obviously distributed in the same way as in an isolated galaxy. What emerges from the analysis is that the total mass distribution of the galaxy under examination turns out to have a slope much steeper than the isothermal usually expected.
Resumo:
Galaxy clusters and groups are the most massive bounded structures and the knots of the large-scale structure of the Universe. These structures reside in dark matter haloes, hosting tens to hundreds of galaxies and they are filled with hot and rarefied gas. Radio Galaxies are a peculiar class of galaxies with a luminosity in the radio band up to 10^46 erg/s between 10 MHz and 100 GHz. These galaxies are a subclass of AGN in which there is accretion on the Super Massive Black Hole. The accretion generates jets of relativistic particles and magnetic fields which lose energy through synchrotron radiation, best observable at radio frequencies. The study of the spectral ageing of the AGN plasma is fundamental to understand its evolution, interaction with the environment and to constrain the AGN duty cycle. n this thesis, we have investigated the duty cycle of the nearby remnant radio galaxy NGC 6086, located in the centre of the galaxy group Abell 2162. We have made major steps forward thanks to the new high-sensitivity interferometers in the low-frequency radio band. We have detected for the first time three filaments of emission and a second couple of lobes. We have performed an integrated and resolved analysis on the previously known inner lobes, the new filaments and the older outer lobes. We have performed an age estimate of the two pairs of lobes to give constraints on the duty cycle of the source and an estimate of its active time.
Resumo:
Dwarf galaxies often experience gravitational interactions from more massive companions. These interactions can deform galaxies, turn star formation on or off, or give rise to mass loss phenomena. In this thesis work we propose to study, through N-body simulations, the stellar mass loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the Milky Way gravitational potential. Which is a key phenomenon to explain the mass budget problem: the Fornax globular clusters together have a stellar mass comparable to that of Fornax itself. If we look at the stellar populations which they are made of and we apply the scenarios of stellar population formation we find that, originally, they must have been >= 5 times more massive. For this reason, they must have lost or ejected stars through dynamic interactions. However, as presented in Larsen et al (2012), field stars alone are not sufficient to explain this scenario. We may assume that some of those stars fell into Fornax, and later were stripped by Milky Way. In order to study this solution we built several illustrative single component simulations, with a tabulated density model using the P07ecc orbit studied from Battaglia et al (2015). To divide the single component into stellar and dark matter components we have defined a posterior the probability function P(E), where E is the initial energy distribution of the particles. By associating each particle with a fraction of stellar mass and dark matter. In this way we built stellar density profiles without repeating simulations. We applied the method to Fornax using the profile density tables obtained in Pascale et al (2018) as observational constraints and to build the model. The results confirm the results previously obtained with less flexible models by Battaglia et al (2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible within 3 kpc, too small to solve the mass budget problem.