255 resultados para Algebre monounarie, ordine, classificazione
Resumo:
L'informatica musicale è una disciplina in continua crescita che sta ottenendo risultati davvero interessanti con l'impiego di sistemi artificiali intelligenti, come le reti neuronali, che permettono di emulare capacità umane di ascolto e di esecuzione musicale. Di particolare interesse è l'ambito della codifica di informazioni musicali tramite formati simbolici, come il MIDI, che permette un'analisi di alto livello dei brani musicali e consente la realizzazione di applicazioni sorprendentemente innovative. Una delle più fruttifere applicazioni di questi nuovi strumenti di codifica riguarda la classificazione di file audio musicali. Questo elaborato si propone di esporre i fondamentali aspetti teorici che concernono la classificazione di brani musicali tramite reti neuronali artificiali e descrivere alcuni esperimenti di classificazione di file MIDI. La prima parte fornisce alcune conoscenze di base che permettono di leggere gli esperimenti presenti nella seconda sezione con una consapevolezza teorica più profonda. Il fine principale della prima parte è quello di sviluppare una comparazione da diversi punti di vista disciplinari tra le capacità di classificazione musicale umane e quelle artificiali. Si descrivono le reti neuronali artificiali come sistemi intelligenti ispirati alla struttura delle reti neurali biologiche, soffermandosi in particolare sulla rete Feedforward e sull'algoritmo di Backpropagation. Si esplora il concetto di percezione nell'ambito della psicologia cognitiva con maggiore attenzione alla percezione uditiva. Accennate le basi della psicoacustica, si passa ad una descrizione delle componenti strutturali prima del suono e poi della musica: la frequenza e l'ampiezza delle onde, le note e il timbro, l'armonia, la melodia ed il ritmo. Si parla anche delle illusioni sonore e della rielaborazione delle informazioni audio da parte del cervello umano. Si descrive poi l'ambito che interessa questa tesi da vicino: il MIR (Music Information Retrieval). Si analizzano i campi disciplinari a cui questa ricerca può portare vantaggi, ossia quelli commerciali, in cui i database musicali svolgono ruoli importanti, e quelli più speculativi ed accademici che studiano i comportamenti di sistemi intelligenti artificiali e biologici. Si descrivono i diversi metodi di classificazione musicale catalogabili in base al tipo di formato dei file audio in questione e al tipo di feature che si vogliono estrarre dai file stessi. Conclude la prima sezione di stampo teorico un capitolo dedicato al MIDI che racconta la storia del protocollo e ne descrive le istruzioni fondamentali nonchè la struttura dei midifile. La seconda parte ha come obbiettivo quello di descrivere gli esperimenti svolti che classificano file MIDI tramite reti neuronali mostrando nel dettaglio i risultati ottenuti e le difficoltà incontrate. Si coniuga una presentazione dei programmi utilizzati e degli eseguibili di interfaccia implementati con una descrizione generale della procedura degli esperimenti. L'obbiettivo comune di tutte le prove è l'addestramento di una rete neurale in modo che raggiunga il più alto livello possibile di apprendimento circa il riconoscimento di uno dei due compositori dei brani che le sono stati forniti come esempi.
Resumo:
In questa tesi si studiano strutture d'ordine presenti su insiemi di permutazioni. In particolare si studiano la funzione di Moebius del poset delle permutazioni ordinate per contenimento con motivi consecutivi e il reticolo delle permutazioni che evitano un motivo di lunghezza tre usando l'isomorfismo con l'insieme dei cammini di Dyck.
Resumo:
Il polietilene oggi è commercialmente noto con il nome di UHMWPE.
Resumo:
In questa tesi studiamo il ruolo dei sistemi di radici nella classificazione delle algebre di Lie e delle superalgebre di Lie. L'interesse per le superalgebre di Lie nasce nei primi anni '70 quando una parte dei fisici si convinse che sarebbe stato più utile e molto più chiaro riuscire ad avere uno schema di riferimento unitario in cui non dovesse essere necessario trattare separatamente particelle fisiche come bosoni e fermioni. Una teoria sistematica sulle superalgebre di Lie fu introdotta da V. Kac nel 1977 che diede la classificazione delle superalgebre di Lie semplici su un campo algebricamente chiuso.
Resumo:
La tesi è finalizzata ad una preliminare fase di sperimentazione di un algoritmo che, a partire da dati di acustica, sia in grado di classificare le specie di pesce presenti in cale mono e plurispecifiche. I dati sono stati acquisiti nella fascia costiera della Sicilia meridionale, durante alcune campagne di ricerca effettuate tra il 2002 e il 2011, dall’IAMC – CNR di Capo Granitola. Sono stati registrati i valori delle variabili ambientali e biotiche tramite metodologia acustica e della composizione dei banchi di pesci catturati tramite cale sperimentali: acciughe, sardine, suri, altre specie pelagiche e pesci demersali. La metodologia proposta per la classificazione dei segnali acustici nasce dalla fusione di logica fuzzy e teorema di Bayes, per dar luogo ad un approccio modellistico consistente in un compilatore naïve Bayes operante in ambiente fuzzy. Nella fattispecie si è proceduto alla fase di training del classificatore, mediante un learning sample di percentuali delle categorie ittiche sopra menzionate, e ai dati di alcune delle osservazioni acustiche, biotiche e abiotiche, rilevate dall’echosurvey sugli stessi banchi. La validazione del classificatore è stata effettuata sul test set, ossia sui dati che non erano stati scelti per la fase di training. Per ciascuna cala, sono stati infine tracciati dei grafici di dispersione/correlazione dei gruppi ittici e le percentuali simulate. Come misura di corrispondenza dei dati sono stati considerati i valori di regressione R2 tra le percentuali reali e quelle calcolate dal classificatore fuzzy naïve Bayes. Questi, risultando molto alti (0,9134-0,99667), validavano il risultato del classificatore che discriminava con accuratezza le ecotracce provenienti dai banchi. L’applicabilità del classificatore va comunque testata e verificata oltre i limiti imposti da un lavoro di tesi; in particolare la fase di test va riferita a specie diverse, a condizioni ambientali al contorno differenti da quelle riscontrate e all’utilizzo di learning sample meno estesi.