507 resultados para Struts 2, ERP, Studio di fattibilità, project manager, project managing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente attività di tesi è stata svolta presso la Divisione di Sicurezza Nucleare dell’ENEA di Bologna ed è stata finalizzata ad analizzare, mediante il codice MELCOR 2.1, le conseguenze di tre incidenti severi non mitigati di tipo LBLOCA in un generico reattore nucleare ad acqua leggera pressurizzata (PWR) da 900 MWe. In particolare sono stati confrontati gli scenari incidentali relativi a tre distinti eventi iniziatori nel circuito di refrigerazione primario: la rottura a ghigliottina della gamba fredda (CL) del loop 1, della gamba calda (HL) del loop 1 e della surge line di connessione con il pressurizzatore. Le analisi MELCOR hanno indagato la progressione incidentale in-vessel, con particolare riferimento alle fenomenologie termoidrauliche e di degradazione del core. MELCOR infatti è un codice integrato che simula le principali fenomenologie riguardanti sequenze incidentali di tipo severo in reattori ad acqua leggera. Durante la prima fase dei tre transitori incidentali risultano predominanti fenomenologie di carattere termoidraulico. In particolare MELCOR predice la rapida depressurizzazione e il conseguente svuotamento del sistema di refrigerazione primario. I tre transitori sono poi caratterizzati dallo scoprimento completo del core a causa dell’indisponibilità del sistema di refrigerazione di emergenza. Il conseguente riscaldamento del core per il calore di decadimento e per ossidazione delle strutture metalliche conduce inevitabilmente alla sua degradazione e quindi al fallimento della lower head del recipiente in pressione del reattore nei tre scenari incidentali in tempi diversi. Durante la prima fase incidentale, di carattere prevalentemente termoidraulico, sono state rilevate le principali differenze fenomenologiche causate dalle differenti posizioni e dimensioni delle rotture. Il transitorio causato dalla rottura della CL si è confermato come il più gravoso, con fallimento anticipato della lower head rispetto agli altri due transitori considerati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’elaborato è nato dall’interesse verso un progetto di un impianto di sanificazione delle acque in corso di realizzazione in Kenya. Valutando le differenti realtà di tale sito rispetto alla nostra quotidianità è nata l’esigenza di approfondire preliminarmente le varie tecnologie di approvvigionamento e sanificazione delle acque, più consone per siti in via di sviluppo. Oltre 2.5 miliardi di persone non hanno accesso ai cosiddetti “improved water supply and sanitation”, le fonti idriche migliorate: acquedotti e fognature pubbliche, eventualmente con collegamenti domestici, sorgenti e serbatoi protetti, cisterne per la raccolta delle acque piovane, ecc. Maggior interesse è stata attribuita alla qualità dell’acqua e ai possibili trattamenti di sanificazione. Impianti semplici, economici ed efficaci alla rimozione totale della carica microbiologica sono sicuramente bisogni di base e componenti essenziali di assistenza sanitaria primaria. Dove è possibile le soluzioni ottimali consigliate sono tecnologie a basso costo che sono facili da progettare, costruire e impiegare, e sono costituite da materiali facilmente disponibili nei luoghi dove si applicano. Nel villaggio di Sori, in Kenya, un impianto di ozonizzazione delle acque del Lago Vittoria, con un precedente trattamento di sedimentazione e filtrazione rende disponibili a 16000 abitanti circa 30 l/ab giorno microbiologicamente sana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’idea di questa tesi è nata dalla volontà di verificare il lavoro svolto come oggetto di studio di illustri scienziati che si prefissero come traguardo la risoluzione di questo problema, che aveva come obiettivo la comprensione, la previsione e l’ottimizzazione dei fenomeni legati allo scambio termico convettivo attraverso le svariate geometrie di superficie. Gli steps per il raggiungimento dello scopo oggetto di questa tesi, pertanto, possono essere così riassunti: 1. definizione di una corretta metodologia di calcolo dei campi fluidodinamico e termico, per un condotto piano infinitamente lungo, in condizioni di completo sviluppo; 2. dimostrazione della fattibilità di un’ottimizzazione di tale geometria, tramite l’utilizzo del software Mathematica; 3. trovare l’andamento del numero di Nusselt e verificare se il risultato ottenuto coincide con il risultato che si trova in letteratura relativamente al caso studiato. Da quanto ottenuto mediante i calcoli realizzati con il software Mathematica possiamo concludere che l’andamento del numero di Nusselt, ottenuto tenendo conto delle condizioni al contorno di tipo T in un condotto con pareti piane infinitamente lungo, ci dimostrano che i calcoli precedentemente effettuati sono corretti in quanto corrispondo ai risultati presenti in letteratura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La dialisi, le cui basi sono state fondate a metà ottocento dal chimico Thomas Graham, è la terapia, alternativa al trapianto, utilizzata su pazienti affetti da insufficienza renale. Ad oggi tale terapia ha un numero sempre maggiore di utilizzatori, più di 2,5 milioni di persone al mondo, ragione per cui ha un impatto sempre più grande sul sistema sanitario. La terapia, ha come scopo principale quello ripristinare gli equilibri idro-elettrolitico e acido-base del sangue del paziente utilizzando principi quali ultrafiltrazione, convezione e diffusione. Per raggiungere questo obiettivo, il sangue del paziente viene fatto scorrere controcorrente al liquido di dialisi, di composizione nota, ai capi di una membrana semipermeabile. Nel caso dell’emodialisi tutto il processo si svolge in circolazione extracorporea. La dialisi viene eseguita quando i reni del paziente non riescono più a espletare la loro funzione, con conseguente accumulo di tossine e di liquidi, che nel giro di pochi giorni porterebbe alla morte se non si interviene. Data la sua funzione, una parte importante della macchina che esegue l’emodialisi, è il sistema di controllo dell’ultrafiltrazione, che permette di rimuovere in maniera controllata i liquidi che il paziente non riesce a smaltire in maniera autonoma. La rimozione di liquidi avviene mediante la creazione di un gradiente pressorio tra il lato sangue e il lato dializzato, che causa il passaggio di liquidi da una parte all’altra della membrana semipermeabile. Esistono vari metodi che permettono di realizzare questo processo, che si differenziano per la strategia utilizzata per creare i gradienti pressori; ognuno dei quali permette di ottenere una determinata accuratezza. Scopo del mio lavoro di tesi è stato quello di studiare e validare un nuovo sistema di realizzazione e controllo dell’ultrafiltrazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attraverso lo studio di serie temporali di coordinate è possibile studiare l'entità degli spostamenti, nel tempo, di punti materializzati sulla Terra. In particolare, si incentra l'attenzione sull'analisi della stazione permanente GNSS DCRU collocata presso la base italo-francese Concordia, così da valutare il campo di velocità di deflusso superficiale del ghiaccio in una porzione di plateau dell’Antartide orientale sede della perforazione profonda in ghiaccio del progetto European Project for Ice Coring in Antarctica (EPICA) . Tale stazione è stata inserita in una rete di inquadramento dell'IGS e ha acquisito dati satellitari dal 2005 a oggi, raccolti giornalmente in file RINEX. Tramite l'utilizzo del software Bernese versione 5.2 è stato possibile ottenere dai file RINEX i file SINEX contenenti le soluzioni giornaliere, che costituiscono la serie temporale, e le relative varianze e covarianze. Avvalendosi del programma Tsview implementato per GGMatlab si sono poi valutate le componenti principali che caratterizzano una serie temporale, quali il trend, le componenti stagionali ed i rumori che giocano, talvolta, un ruolo importante nella valutazione dell'incertezza legata alle misure. Infine si è cercato di dare un'interpretazione fisica ai risultati che sono tutt'ora oggetto di studio. In questa tesi, quindi, si delinea un quadro generale delle procedure e delle problematiche da affrontare, sia per ottenere dall'acquisizione satellitare le soluzioni giornaliere costituenti la serie temporale, sia per analizzare la serie stessa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente tesi riguarda lo studio di procedimenti di ottimizzazione di sistemi smorzati. In particolare, i sistemi studiati sono strutture shear-type soggette ad azioni di tipo sismico impresse alla base. Per effettuare l’ottimizzazione dei sistemi in oggetto si agisce sulle rigidezze di piano e sui coefficienti di smorzamento effettuando una ridistribuzione delle quantità suddette nei piani della struttura. È interessante effettuare l’ottimizzazione di sistemi smorzati nell’ottica della progettazione antisismica, in modo da ridurre la deformata della struttura e, conseguentemente, anche le sollecitazioni che agiscono su di essa. Il lavoro consta di sei capitoli nei quali vengono affrontate tre procedure numerico-analitiche per effettuare l’ottimizzazione di sistemi shear-type. Nel primo capitolo si studia l’ottimizzazione di sistemi shear-type agendo su funzioni di trasferimento opportunamente vincolate. In particolare, le variabili di progetto sono le rigidezze di piano, mentre i coefficienti di smorzamento e le masse di piano risultano quantità note e costanti durante tutto il procedimento di calcolo iterativo; per effettuare il controllo dinamico della struttura si cerca di ottenere una deformata pressoché rettilinea. Tale condizione viene raggiunta ponendo le ampiezze delle funzioni di trasferimento degli spostamenti di interpiano pari all’ampiezza della funzione di trasferimento del primo piano. Al termine della procedura si ottiene una ridistribuzione della rigidezza complessiva nei vari piani della struttura. In particolare, si evince un aumento della rigidezza nei piani più bassi che risultano essere quelli più sollecitati da una azione impressa alla base e, conseguentemente, si assiste ad una progressiva riduzione della variabile di progetto nei piani più alti. L’applicazione numerica di tale procedura viene effettuata nel secondo capitolo mediante l’ausilio di un programma di calcolo in linguaggio Matlab. In particolare, si effettua lo studio di sistemi a tre e a cinque gradi di libertà. La seconda procedura numerico-analitica viene presentata nel terzo capitolo. Essa riguarda l’ottimizzazione di sistemi smorzati agendo simultaneamente sulla rigidezza e sullo smorzamento e consta di due fasi. La prima fase ricerca il progetto ottimale della struttura per uno specifico valore della rigidezza complessiva e dello smorzamento totale, mentre la seconda fase esamina una serie di progetti ottimali in funzione di diversi valori della rigidezza e dello smorzamento totale. Nella prima fase, per ottenere il controllo dinamico della struttura, viene minimizzata la somma degli scarti quadratici medi degli spostamenti di interpiano. Le variabili di progetto, aggiornate dopo ogni iterazione, sono le rigidezze di piano ed i coefficienti di smorzamento. Si pone, inoltre, un vincolo sulla quantità totale di rigidezza e di smorzamento, e i valori delle rigidezze e dei coefficienti di smorzamento di ogni piano non devono superare un limite superiore posto all’inizio della procedura. Anche in questo caso viene effettuata una ridistribuzione delle rigidezze e dei coefficienti di smorzamento nei vari piani della struttura fino ad ottenere la minimizzazione della funzione obiettivo. La prima fase riduce la deformata della struttura minimizzando la somma degli scarti quadrarici medi degli spostamenti di interpiano, ma comporta un aumento dello scarto quadratico medio dell’accelerazione assoluta dell’ultimo piano. Per mantenere quest’ultima quantità entro limiti accettabili, si passa alla seconda fase in cui si effettua una riduzione dell’accelerazione attraverso l’aumento della quantità totale di smorzamento. La procedura di ottimizzazione di sistemi smorzati agendo simultaneamente sulla rigidezza e sullo smorzamento viene applicata numericamente, mediante l’utilizzo di un programma di calcolo in linguaggio Matlab, nel capitolo quattro. La procedura viene applicata a sistemi a due e a cinque gradi di libertà. L’ultima parte della tesi ha come oggetto la generalizzazione della procedura che viene applicata per un sistema dotato di isolatori alla base. Tale parte della tesi è riportata nel quinto capitolo. Per isolamento sismico di un edificio (sistema di controllo passivo) si intende l’inserimento tra la struttura e le sue fondazioni di opportuni dispositivi molto flessibili orizzontalmente, anche se rigidi in direzione verticale. Tali dispositivi consentono di ridurre la trasmissione del moto del suolo alla struttura in elevazione disaccoppiando il moto della sovrastruttura da quello del terreno. L’inserimento degli isolatori consente di ottenere un aumento del periodo proprio di vibrare della struttura per allontanarlo dalla zona dello spettro di risposta con maggiori accelerazioni. La principale peculiarità dell’isolamento alla base è la possibilità di eliminare completamente, o quantomeno ridurre sensibilmente, i danni a tutte le parti strutturali e non strutturali degli edifici. Quest’ultimo aspetto è importantissimo per gli edifici che devono rimanere operativi dopo un violento terremoto, quali ospedali e i centri operativi per la gestione delle emergenze. Nelle strutture isolate si osserva una sostanziale riduzione degli spostamenti di interpiano e delle accelerazioni relative. La procedura di ottimizzazione viene modificata considerando l’introduzione di isolatori alla base di tipo LRB. Essi sono costituiti da strati in elastomero (aventi la funzione di dissipare, disaccoppiare il moto e mantenere spostamenti accettabili) alternati a lamine in acciaio (aventi la funzione di mantenere una buona resistenza allo schiacciamento) che ne rendono trascurabile la deformabilità in direzione verticale. Gli strati in elastomero manifestano una bassa rigidezza nei confronti degli spostamenti orizzontali. La procedura di ottimizzazione viene applicata ad un telaio shear-type ad N gradi di libertà con smorzatori viscosi aggiunti. Con l’introduzione dell’isolatore alla base si passa da un sistema ad N gradi di libertà ad un sistema a N+1 gradi di libertà, in quanto l’isolatore viene modellato alla stregua di un piano della struttura considerando una rigidezza e uno smorzamento equivalente dell’isolatore. Nel caso di sistema sheat-type isolato alla base, poiché l’isolatore agisce sia sugli spostamenti di interpiano, sia sulle accelerazioni trasmesse alla struttura, si considera una nuova funzione obiettivo che minimizza la somma incrementata degli scarti quadratici medi degli spostamenti di interpiano e delle accelerazioni. Le quantità di progetto sono i coefficienti di smorzamento e le rigidezze di piano della sovrastruttura. Al termine della procedura si otterrà una nuova ridistribuzione delle variabili di progetto nei piani della struttura. In tal caso, però, la sovrastruttura risulterà molto meno sollecitata in quanto tutte le deformazioni vengono assorbite dal sistema di isolamento. Infine, viene effettuato un controllo sull’entità dello spostamento alla base dell’isolatore perché potrebbe raggiungere valori troppo elevati. Infatti, la normativa indica come valore limite dello spostamento alla base 25cm; valori più elevati dello spostamento creano dei problemi soprattutto per la realizzazione di adeguati giunti sismici. La procedura di ottimizzazione di sistemi isolati alla base viene applicata numericamente mediante l’utilizzo di un programma di calcolo in linguaggio Matlab nel sesto capitolo. La procedura viene applicata a sistemi a tre e a cinque gradi di libertà. Inoltre si effettua il controllo degli spostamenti alla base sollecitando la struttura con il sisma di El Centro e il sisma di Northridge. I risultati hanno mostrato che la procedura di calcolo è efficace e inoltre gli spostamenti alla base sono contenuti entro il limite posto dalla normativa. Giova rilevare che il sistema di isolamento riduce sensibilmente le grandezze che interessano la sovrastruttura, la quale si comporta come un corpo rigido al di sopra dell’isolatore. In futuro si potrà studiare il comportamento di strutture isolate considerando diverse tipologie di isolatori alla base e non solo dispositivi elastomerici. Si potrà, inoltre, modellare l’isolatore alla base con un modello isteretico bilineare ed effettuare un confronto con i risultati già ottenuti per il modello lineare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oltre un miliardo di persone non ha oggi accesso all’acqua potabile; più di due miliardi è il numero di coloro che vivono in condizioni igienico-sanitarie realmente proibitive. Sono 80 i paesi nel mondo (con il 40% della popolazione totale) in cui si riscontra difficoltà di approvvigionamento e presenza di risorse idriche che mancano dei requisiti che dovrebbero essere assicurati per la tutela della salute: quotidianamente e sistematicamente il diritto di accesso all’acqua, che nessun individuo dovrebbe vedersi negato, viene violato. Scarsità di acqua e non omogenea distribuzione sulla superficie terrestre sono fattori che concorrono alla crisi della risorsa, cui contribuiscono processsi di natura ambientale (cambiamenti climatici, desertificazione), di natura economica (le sorti dell’industria agroalimentare, la globalizzazione degli scambi, il bisogno crescente di energia), di natura sociale (migrazioni, urbanizzazione, crescita demografica, epidemie), di natura culturale (passaggio dal rurale all’urbano, dall’agricoltura di sussistenza a quella di profitto). Nell’ottica di uno sviluppo sostenibile un aumento indiscriminato dell’offerta non può costituire soluzione al continuo incremento della domanda di acqua. Si rende pertanto necessaria la definizione di politiche e strumenti di cambiamento nei modelli di consumo e nella pianificazione che consentano una riduzione degli squilibri nella distribuzione e nella gestione della risorsa a livello domestico e civile, industriale, agricolo. L’uso efficiente, e quindi sostenibile, dell’acqua è da perseguirsi secondo le modalità: • Risparmio, inteso come minore consumo di acqua all’inizio del ciclo. • Riciclo dell’acqua in circuito chiuso, inteso come riuso dell’acqua di scarico, o uso multiplo dell’acqua. Una idonea utilizzazione dipende da una idonea progettazione, che abbia come finalità: • La destinazione in via prioritaria delle fonti e delle risorse di più elevata qualità agli usi idropotabili, con una graduale sostituzione del consumo per altri usi con risorse di minore pregio. • La regolamentazione dell’uso delle acque sotterranee, mediante la limitazione del ricorso all’impiego di pozzi solo in mancanza di forniture alternative per uso civile, industriale, agricolo. • L’incentivazione ad un uso razionale della risorsa, anche mediante l’attuazione di idonee politiche tariffarie. • L’aumento dell’efficienza delle reti di adduzione e distribuzione, sia civili che irrigue. • La promozione di uso efficiente, riciclo e recupero di acqua nell’industria. • Il miglioramento dell’efficienza ed efficacia delle tecniche di irrigazione. • La promozione del riutilizzo delle acque nei vari settori. • La diffusione nella pratica domestica di apparati e tecnologie progettati per la riduzione degli sprechi e dei consumi di acqua. In ambito agricolo la necessità di un uso parsimonioso della risorsa impone il miglioramento dell’efficienza irrigua, pari appena al 40%. La regione Emilia Romagna a livello locale, Israele a livello internazionale, forniscono ottimi esempi in termini di efficacia dei sistemi di trasporto e di distribuzione, di buona manutenzione delle strutture. Possibili soluzioni verso le quali orientare la ricerca a livello mondiale per arginare la progressiva riduzione delle riserve idriche sono: • Revisione dei costi idrici. • Recupero delle riserve idriche. • Raccolta dell’acqua piovana. • Miglioramento degli impianti di distribuzione idrica. • Scelta di metodi di coltivazione idonei alle caratteristiche locali. • Scelta di colture a basso fabbisogno idrico. • Conservazione della risorsa attraverso un sistema di irrigazione efficiente. • Opere di desalinizzazione. • Trasferimento idrico su vasta scala da un’area all’altra. Si tratta di tecniche la cui attuazione può incrementare la disponibilità media pro capite di acqua, in particolare di coloro i quali non ne posseggono in quantità sufficiente per bere o sono privi di sistemi igienico-sanitari sufficienti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CAPITOLO 1 INTRODUZIONE Il lavoro presentato è relativo all’utilizzo a fini metrici di immagini satellitari storiche a geometria panoramica; in particolare sono state elaborate immagini satellitari acquisite dalla piattaforma statunitense CORONA, progettata ed impiegata essenzialmente a scopi militari tra gli anni ’60 e ’70 del secolo scorso, e recentemente soggette ad una declassificazione che ne ha consentito l’accesso anche a scopi ed utenti non militari. Il tema del recupero di immagini aeree e satellitari del passato è di grande interesse per un ampio spettro di applicazioni sul territorio, dall’analisi dello sviluppo urbano o in ambito regionale fino ad indagini specifiche locali relative a siti di interesse archeologico, industriale, ambientale. Esiste infatti un grandissimo patrimonio informativo che potrebbe colmare le lacune della documentazione cartografica, di per sé, per ovvi motivi tecnici ed economici, limitata a rappresentare l’evoluzione territoriale in modo asincrono e sporadico, e con “forzature” e limitazioni nel contenuto informativo legate agli scopi ed alle modalità di rappresentazione delle carte nel corso del tempo e per diversi tipi di applicazioni. L’immagine di tipo fotografico offre una rappresentazione completa, ancorché non soggettiva, dell’esistente e può complementare molto efficacemente il dato cartografico o farne le veci laddove questo non esista. La maggior parte del patrimonio di immagini storiche è certamente legata a voli fotogrammetrici che, a partire dai primi decenni del ‘900, hanno interessato vaste aree dei paesi più avanzati, o regioni di interesse a fini bellici. Accanto a queste, ed ovviamente su periodi più vicini a noi, si collocano le immagini acquisite da piattaforma satellitare, tra le quali rivestono un grande interesse quelle realizzate a scopo di spionaggio militare, essendo ad alta risoluzione geometrica e di ottimo dettaglio. Purtroppo, questo ricco patrimonio è ancora oggi in gran parte inaccessibile, anche se recentemente sono state avviate iniziative per permetterne l’accesso a fini civili, in considerazione anche dell’obsolescenza del dato e della disponibilità di altre e migliori fonti di informazione che il moderno telerilevamento ci propone. L’impiego di immagini storiche, siano esse aeree o satellitari, è nella gran parte dei casi di carattere qualitativo, inteso ad investigare sulla presenza o assenza di oggetti o fenomeni, e di rado assume un carattere metrico ed oggettivo, che richiederebbe tra l’altro la conoscenza di dati tecnici (per esempio il certificato di calibrazione nel caso delle camere aerofotogrammetriche) che sono andati perduti o sono inaccessibili. Va ricordato anche che i mezzi di presa dell’epoca erano spesso soggetti a fenomeni di distorsione ottica o altro tipo di degrado delle immagini che ne rendevano difficile un uso metrico. D’altra parte, un utilizzo metrico di queste immagini consentirebbe di conferire all’analisi del territorio e delle modifiche in esso intercorse anche un significato oggettivo che sarebbe essenziale per diversi scopi: per esempio, per potere effettuare misure su oggetti non più esistenti o per potere confrontare con precisione o co-registrare le immagini storiche con quelle attuali opportunamente georeferenziate. Il caso delle immagini Corona è molto interessante, per una serie di specificità che esse presentano: in primo luogo esse associano ad una alta risoluzione (dimensione del pixel a terra fino a 1.80 metri) una ampia copertura a terra (i fotogrammi di alcune missioni coprono strisce lunghe fino a 250 chilometri). Queste due caratteristiche “derivano” dal principio adottato in fase di acquisizione delle immagini stesse, vale a dire la geometria panoramica scelta appunto perché l’unica che consente di associare le due caratteristiche predette e quindi molto indicata ai fini spionaggio. Inoltre, data la numerosità e la frequenza delle missioni all’interno dell’omonimo programma, le serie storiche di questi fotogrammi permettono una ricostruzione “ricca” e “minuziosa” degli assetti territoriali pregressi, data appunto la maggior quantità di informazioni e l’imparzialità associabili ai prodotti fotografici. Va precisato sin dall’inizio come queste immagini, seppur rappresentino una risorsa “storica” notevole (sono datate fra il 1959 ed il 1972 e coprono regioni moto ampie e di grandissimo interesse per analisi territoriali), siano state molto raramente impiegate a scopi metrici. Ciò è probabilmente imputabile al fatto che il loro trattamento a fini metrici non è affatto semplice per tutta una serie di motivi che saranno evidenziati nei capitoli successivi. La sperimentazione condotta nell’ambito della tesi ha avuto due obiettivi primari, uno generale ed uno più particolare: da un lato il tentativo di valutare in senso lato le potenzialità dell’enorme patrimonio rappresentato da tali immagini (reperibili ad un costo basso in confronto a prodotti simili) e dall’altro l’opportunità di indagare la situazione territoriale locale per una zona della Turchia sud orientale (intorno al sito archeologico di Tilmen Höyük) sulla quale è attivo un progetto condotto dall’Università di Bologna (responsabile scientifico il Prof. Nicolò Marchetti del Dipartimento di Archeologia), a cui il DISTART collabora attivamente dal 2005. L’attività è condotta in collaborazione con l’Università di Istanbul ed il Museo Archeologico di Gaziantep. Questo lavoro si inserisce, inoltre, in un’ottica più ampia di quelle esposta, dello studio cioè a carattere regionale della zona in cui si trovano gli scavi archeologici di Tilmen Höyük; la disponibilità di immagini multitemporali su un ampio intervallo temporale, nonché di tipo multi sensore, con dati multispettrali, doterebbe questo studio di strumenti di conoscenza di altissimo interesse per la caratterizzazione dei cambiamenti intercorsi. Per quanto riguarda l’aspetto più generale, mettere a punto una procedura per il trattamento metrico delle immagini CORONA può rivelarsi utile all’intera comunità che ruota attorno al “mondo” dei GIS e del telerilevamento; come prima ricordato tali immagini (che coprono una superficie di quasi due milioni di chilometri quadrati) rappresentano un patrimonio storico fotografico immenso che potrebbe (e dovrebbe) essere utilizzato sia a scopi archeologici, sia come supporto per lo studio, in ambiente GIS, delle dinamiche territoriali di sviluppo di quelle zone in cui sono scarse o addirittura assenti immagini satellitari dati cartografici pregressi. Il lavoro è stato suddiviso in 6 capitoli, di cui il presente costituisce il primo. Il secondo capitolo è stato dedicato alla descrizione sommaria del progetto spaziale CORONA (progetto statunitense condotto a scopo di fotoricognizione del territorio dell’ex Unione Sovietica e delle aree Mediorientali politicamente correlate ad essa); in questa fase vengono riportate notizie in merito alla nascita e all’evoluzione di tale programma, vengono descritti piuttosto dettagliatamente gli aspetti concernenti le ottiche impiegate e le modalità di acquisizione delle immagini, vengono riportati tutti i riferimenti (storici e non) utili a chi volesse approfondire la conoscenza di questo straordinario programma spaziale. Nel terzo capitolo viene presentata una breve discussione in merito alle immagini panoramiche in generale, vale a dire le modalità di acquisizione, gli aspetti geometrici e prospettici alla base del principio panoramico, i pregi ed i difetti di questo tipo di immagini. Vengono inoltre presentati i diversi metodi rintracciabili in bibliografia per la correzione delle immagini panoramiche e quelli impiegati dai diversi autori (pochi per la verità) che hanno scelto di conferire un significato metrico (quindi quantitativo e non solo qualitativo come è accaduto per lungo tempo) alle immagini CORONA. Il quarto capitolo rappresenta una breve descrizione del sito archeologico di Tilmen Höyuk; collocazione geografica, cronologia delle varie campagne di studio che l’hanno riguardato, monumenti e suppellettili rinvenute nell’area e che hanno reso possibili una ricostruzione virtuale dell’aspetto originario della città ed una più profonda comprensione della situazione delle capitali del Mediterraneo durante il periodo del Bronzo Medio. Il quinto capitolo è dedicato allo “scopo” principe del lavoro affrontato, vale a dire la generazione dell’ortofotomosaico relativo alla zona di cui sopra. Dopo un’introduzione teorica in merito alla produzione di questo tipo di prodotto (procedure e trasformazioni utilizzabili, metodi di interpolazione dei pixel, qualità del DEM utilizzato), vengono presentati e commentati i risultati ottenuti, cercando di evidenziare le correlazioni fra gli stessi e le problematiche di diversa natura incontrate nella redazione di questo lavoro di tesi. Nel sesto ed ultimo capitolo sono contenute le conclusioni in merito al lavoro in questa sede presentato. Nell’appendice A vengono riportate le tabelle dei punti di controllo utilizzati in fase di orientamento esterno dei fotogrammi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fino ad un recente passato, le macchine elettriche di tipo trifase costituivano l’unica soluzione in ambito industriale per la realizzazione di azionamenti di grande potenza. Da quando i motori sono gestiti da convertitori elettronici di potenza si è ottenuto un notevole passo in avanti verso l’innovazione tecnologica. Infatti, negli ultimi decenni, le tecnologie sempre più all’avanguardia e l’aumento dell’utilizzo dell’elettronica, sia in campo civile quanto in quello industriale, hanno contribuito a una riduzione dei costi dei relativi componenti; questa situazione ha permesso di utilizzare tecnologie elaborate che in passato avevano costi elevati e quindi risultavano di scarso interesse commerciale. Nel campo delle macchine elettriche tutto questo ha permesso non solo la realizzazione di azionamenti alimentati e controllati tramite inverter, in grado di garantire prestazioni nettamente migliori di quelle ottenute con i precedenti sistemi di controllo, ma anche l’avvento di una nuova tipologia di macchine con un numero di fasi diverso da quello tradizionale trifase, usualmente impiegato nella generazione e distribuzione dell’energia elettrica. Questo fatto ha destato crescente interesse per lo studio di macchine elettriche multifase. Il campo di studio delle macchine multifase è un settore relativamente nuovo ed in grande fermento, ma è già possibile affermare che le suddette macchine sono in grado di fornire prestazioni migliori di quelle trifase. Un motore con un numero di fasi maggiore di tre presenta numerosi vantaggi: 1. la possibilità di poter dividere la potenza su più fasi, riducendo la taglia in corrente degli interruttori statici dell’inverter; 2. la maggiore affidabilità in caso di guasto di una fase; 3. la possibilità di sfruttare le armoniche di campo magnetico al traferro per ottenere migliori prestazioni in termini di coppia elettromagnetica sviluppata (riduzione dell’ampiezza e incremento della frequenza della pulsazione di coppia); 4. l’opportunità di creare azionamenti elettrici multi-motore, collegando più macchine in serie e comandandole con un unico convertitore di potenza; 5. Maggiori e più efficaci possibilità di utilizzo nelle applicazioni Sensorless. Il presente lavoro di tesi, ha come oggetto lo studio e l’implementazione di una innovativa tecnica di controllo di tipo “sensorless”, da applicare in azionamenti ad orientamento di campo per macchine asincrone eptafase. Nel primo capitolo vengono illustrate le caratteristiche e le equazioni rappresentanti il modello della macchina asincrona eptafase. Nel secondo capitolo si mostrano il banco di prova e le caratteristiche dei vari componenti. Nel terzo capitolo sono rappresentate le tecniche di modulazione applicabili per macchine multifase. Nel quarto capitolo vengono illustrati il modello del sistema implementato in ambiente Simulink ed i risultati delle simulazioni eseguite. Nel quinto capitolo viene presentato il Code Composer Studio, il programma necessario al funzionamento del DSP. Nel sesto capitolo, sono presentati e commentati i risultati delle prove sperimentali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IMPARARE LA SOSTENIBILITA’ Oggetto di questa tesi di laurea è la progettazione di un asilo nido in prossimità della scuola dell’infanzia “Coccinella” di Bertinoro (FC) per rispondere alle esigenze espresse dalla’Amministrazione Comunale, orientate a realizzare un ampliamento della struttura esistente, completando così il polo scolastico comprendente anche la scuola elementare comunale adiacente. La strategia di intervento che il progetto ha adottato prevede due scenari: uno che assume integralmente gli obiettivi dell’Amministrazione e prevede la realizzazione di una struttura per la prima infanzia ad ampliamento di quella esistente, e un secondo che invece propone anche la realizzazione di una nuova scuola materna, in sostituzione di quella attualmente presente. Il progetto ha adottato un approccio integrato dal punto di vista formale e costruttivo, mostrando particolari attenzioni alle tematiche ambientali, assunte come determinanti per ottenere elevati livelli di benessere per i fruitori. La scuola diventa così promotrice di una progettazione orientata a principi di sostenibilità ambientale, efficienza e risparmio energetico, attraverso scelte in cui, sin dalle prime fasi, tecnologia, ambiente, comfort e salute cercano un reciproco equilibrio. A scala urbana si è scelto di recuperare e ampliare il sistema di percorsi pedonali che consente il collegamento tra le diverse parti della città, valorizzando il paesaggio quale risorsa primaria. A scala locale, per garantire l’integrazione del nuovo intervento con l’ambiente e il territorio, il progetto ha richiesto un’approfondita analisi preliminare del sito, comprendente lo studio di elementi del contesto sociale, culturale, ambientale e paesaggistico. A questi si sono affiancati gli aspetti climatologici, funzionali alla scelta dell’esposizione da attribuire all’edificio in modo da mitigare gli effetti delle variazioni climatiche e ottimizzare la qualità indoor. Dal punto di vista funzionale e distributivo il progetto ha risposto a criteri di massima flessibilità e fruibilità degli ambienti interni, assecondando le esigenze di educatori e bambini. Particolare attenzione è stata rivolta alla scelta della tipologia costruttiva, adottando elementi prefabbricati in legno assemblati a secco. Questo sistema consente la realizzazione di strutture affidabili, durevoli nel tempo e rispondenti a tre criteri fondamentali nell’ottica della sostenibilità: impiego di materiali rinnovabili, minimizzazione dei rifiuti e del consumo di acqua in cantiere e possibilità di recupero tramite smontaggio. Per garantire un corretto rapporto tra costruito e contesto urbano si è deciso di utilizzare materiali da rivestimento della tradizione locale, quali la pietra, e di attenuare l’impatto visivo dell’intervento attraverso l’impiego di coperture verdi. Queste, oltre a restituire in copertura il suolo occupato dai volumi edificati, contribuiscono alla mitigazione del microclima, sia all’interno dell’edificio che nel suo intorno. Rispetto agli obiettivi di benessere degli utenti, il progetto si è posto l’obiettivo di superare i confini determinati dalla normativa sui requisiti energetici, puntando al raggiungimento di condizioni ottimali in termini di salubrità del costruito e confort abitativo. Questo intervento si propone di sperimentare un approccio ecologico di sensibilizzazione ai criteri di sostenibilità, capace di coinvolgere tutti i protagonisti della vita scolastica: i bambini, gli insegnanti, i genitori e la città. “Imparare la sostenibilità” è l’obiettivo del progetto e la linea guida della tesi, i “percorsi di sostenibilità”, rappresenta il frutto degli studi, delle analisi, delle scelte che ci hanno spinto ad ottenere lo scopo prefissato e racchiude in un significato sia fisico che metaforico i risultati finali, sia a scala urbana, che a scala dell’edificio. Il termine “percorsi” ci permette di comprendere sia la nuova rete di collegamenti tra l’area di intervento e il resto della città quali strumento di rigenerazione e di contatto con il paesaggio, ma anche il processo di crescita e formativo che il bambino, destinatario e protagonista del progetto, intraprenderà in questi luoghi. La realizzazione di edifici tecnologicamente efficienti dal punto di vista delle prestazioni energetiche (raggiungimento classe B per la struttura esistente, classe A per le ipotesi di ampliamento) ma anche dal punto di vista del confort luminoso rappresenta la premessa per la formazione di una nuova generazione più responsabile e rispettosa nei confronti dell’ambiente che la circonda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro di tesi si inserisce all’interno del progetto Europeo Theseus (Innovative technologies for European coasts in a changing climate), volto a fornire una metodologia integrata per la pianificazione sostenibile di strategie di difesa per la gestione dell’erosione costiera e delle inondazioni che tengano in conto non solo gli aspetti tecnici ma anche quelli sociali, economici e ambientali/ecologici. L'area oggetto di studio di questo elaborato di tesi è la zona costiera della Regione Emilia Romagna, costituita unicamente da spiagge sabbiose. In particolare si è focalizzata l’attenzione sulla zona intertidale, in quanto, essendo l’ambiente di transizione tra l’ambiente marino e quello terrestre può fornire indicazioni su fenomeni erosivi di una spiaggia e cambiamenti del livello del mare, unitamente alla risposta agli interventi antropici. Gli obiettivi della tesi sono sostanzialmente tre: un primo obiettivo è confrontare ecosistemi di spiagge dove sono presenti strutture di difesa costiera rispetto a spiagge che ne erano invece prive. Il secondo obiettivo è valutare l’impatto provocato sugli ecosistemi di spiaggia dall’attività stagionale del “bulldozing” e in ultimo proporre un sistema esperto di nuova concezione in grado di prevedere statisticamente la risposta delle comunità bentoniche a diversi tipi di interventi antropici. A tal fine è stato pianificato un disegno di campionamento dove sono stati indagati tre siti differenti per morfologia e impatto antropico: Cesenatico (barriere e pratica bulldozing), Cervia, dissipativa e non soggetta a erosione (assenza di barriere e ma con pratica del bulldozing) e Lido di Dante, tendenzialmente soggetta a erosione (senza barriere e senza pratica del bulldozing). Il campionamento è stato effettuato in 4 tempi (due prima del “bulldozing” e due dopo) nell’arco di 2 anni. In ciascun sito e tempo sono stati campionati 3 transetti perpendicolari alla linea di costa, e per ogni transetto sono stati individuati tre punti relativi ad alta, media e bassa marea. Per ogni variabile considerata sono stati prelevati totale di 216 campioni. Io personalmente ho analizzato i campioni dell’ultima campagna di campionamento, ma ho analizzato l’insieme dei dati. Sono state considerate variabili relative ai popolamenti macrobentonici quali dati di abbondanza, numero di taxa e indice di diversità di Shannon e alcune variabili abiotiche descrittive delle caratteristiche morfologiche dell’area intertidale quali granulometria (mediana, classazione e asimmetria), detrito conchigliare, contenuto di materia organica (TOM), pendenza e lunghezza della zona intertidale, esposizione delle spiagge e indici morfodinamici. L'elaborazione dei dati è stata effettuata mediante tecniche di analisi univariate e multivariate sia sui dati biotici che sulle variabili ambientali, “descrittori dell’habitat”, allo scopo di mettere in luce le interazioni tra le variabili ambientali e le dinamiche dei popolamenti macrobentonici. L’insieme dei risultati delle analisi univariate e multivariate sia dei descrittori ambientali che di quelli biotici, hanno evidenziato, come la risposta delle variabili considerate sia complessa e non lineare. Nonostante non sia stato possibile evidenziare chiari pattern di interazione fra “protezione” e “bulldozing”, sono comunque emerse delle chiare differenze fra i tre siti indagati sia per quanto riguarda le variabili “descrittori dell’habitat” che quelle relative alla struttura dei popolamenti. In risposta a quanto richiesto in contesto water framework directive e in maniera funzionale all’elevate complessità del sistema intertidale è stato proposto un sistema esperto basato su approccio congiunto fuzzy bayesiano (già utilizzato con altre modalità all’interno del progetto Theseus). Con il sistema esperto prodotto, si è deciso di simulare nel sito di Cesenatico due ripascimenti virtuali uno caratterizzato da una gralometria fine e da uno con una granulometria più grossolana rispetto a quella osservata a Cesenatico. Il sistema fuzzy naïve Bayes, nonostante al momento sia ancora in fase di messa a punto, si è dimostrato in grado di gestire l'elevato numero di interazioni ambientali che caratterizzano la risposta della componente biologica macrobentonica nell'habitat intertidale delle spiagge sabbiose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il territorio di Ferrara è caratterizzata da un’area ad elevata concentrazione di stabilimenti a rischio di incidente rilevante e dalla movimentazione di ingenti quantitativi di sostanze pericolose sulla rete stradale, ferroviaria ed in condotta. Basti pensare che nel solo Comune di Ferrara sono ben 5 le aziende che, per tipologia e quantità di sostanze presenti, rientrano nel campo di applicazione del D.Lgs. 334/99 (“Attuazione delle direttiva 96/82/CE relativa al controllo dei pericoli di incidenti rilevanti connessi con determinate sostanze pericolose”). Per questo motivo, il 24 febbraio 2012 è stato sottoscritto a Ferrara il protocollo d’intesa per l’avvio dello Studio di Sicurezza Integrato d’Area (SSIA) del polo chimico ferrarese da parte della Regione Emilia Romagna, dell’Agenzia Regionale di Protezione Civile, del Comune e della Provincia di Ferrara, dell’Ufficio Territoriale del Governo, della Direzione Regionale dei Vigili del Fuoco, dell’Agenzia Regionale Prevenzione e Ambiente e delle stesse aziende del polo chimico. L’Università di Bologna, tramite il Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali presso il quale è stato svolto il presente lavoro di tesi, prende parte al Consiglio Scientifico ed al Comitato Tecnico del SSIA, aventi funzioni di direzione e di gestione operativa della ricerca. Il progetto è modellato sulla precedente esperienza realizzata in regione per il polo industriale di Ravenna (progetto ARIPAR), la cui validità è stata ampiamente riconosciuta a livello nazionale ed internazionale. L’idea alla base dello studio deriva dal fatto che per avere un quadro della situazione in un’area così complessa, è necessario non solo valutare l’insieme dei rischi presenti, ma anche le loro correlazioni e le conseguenze sul territorio di riferimento. In un’analisi di rischio d’area risulta di primaria importanza l’analisi della vulnerabilità del territorio circostante il sito industriale, in quanto scenari attesi di danno di pari severità assumono una differente valenza in relazione all’effettiva presenza di bersagli nell’area di interesse. Per tale motivo il presente lavoro di tesi ha avuto l’obiettivo di istruire il censimento della vulnerabilità del territorio di Ferrara, con riferimento ai bersagli “uomo”, “ambiente” e “beni materiali”. In primo luogo si è provveduto, sulla base delle distanze di danno degli scenari incidentali attesi, a definire l’estensione dell’area in cui effettuare il censimento. Successivamente si è approfondito il censimento della vulnerabilità del bersaglio “uomo”, prendendo in considerazione sia la popolazione residente, sia i centri di vulnerabilità localizzati all’interno dell’area potenzialmente interessata da incidenti rilevanti. I centri di vulnerabilità non sono altro che luoghi ad elevata densità di persone (ad esempio scuole, ospedali, uffici pubblici, centri commerciali), spesso caratterizzati da una maggiore difficoltà di evacuazione, sia per l’elevato numero di persone presenti sia per la ridotta mobilità delle stesse. Nello specifico si è proceduto alla creazione di un database (grazie all’utilizzo del software ArcView GIS 3.2) di tutti i centri di vulnerabilità presenti, ai quali è stato possibile associare una precisa localizzazione territoriale ed altri dati di carattere informativo. In una fase successiva dello SSIA sarà possibile associare ai centri di vulnerabilità le relative categorie di popolazione, indicando per ciascuna il numero dei presenti. I dati inseriti nel database sono stati forniti in massima parte dal Comune di Ferrara e, in misura più limitata, dall’Agenzia Regionale di Protezione Civile e dalla Camera di Commercio. Presentando spesso tali dati un’aggregazione diversa da quella necessaria ai fini dello SSIA, è stato necessario un intenso lavoro di analisi, di depurazione e di riaggregazione allo scopo di renderli disponibili in una forma fruibile per lo SSIA stesso. Da ultimo si è effettuata una valutazione preliminare della vulnerabilità dei bersagli “ambiente” e “beni materiali”. Per quanto riguarda l’ambiente, si sono messe in luce le aree sottoposte a vincoli di tutela naturalistica e quindi particolarmente vulnerabili in caso di un rilascio accidentale di sostanze pericolose. Per il bersaglio “beni materiali”, non essendo stato possibile reperire dati, si è sono evidenziate le categorie di beni da censire. In conclusione, è possibile affermare che lo studio effettuato in questo lavoro di tesi, ha consentito non solo di conseguire l’obiettivo inizialmente stabilito – l’istruzione del censimento della vulnerabilità del territorio di Ferrara - ma ha contribuito anche alla definizione di una metodologia per il censimento di aree vaste che potrà essere utilmente applicata ad altre zone del territorio nazionale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo testo si pone come obbiettivo l'analisi di fattibilità tecnica e l'introduzione all'implementazione di sistemi che permettano il riutilizzo di codice sorgente di applicazioni con necessità simili su dispositivi Smartphone. In particolare su sistemi Google Android. Questo è il concetto di personalizzazione di applicazioni, in pratica la costruzione di sistemi che permettano di generare applicazioni mobile attraverso interfacce user-friendly e mediante l'uso di codice modulare. L'obbiettivo è fornire una visione globale delle soluzioni e delle problematiche di questo campo, poste come linee guida per chi intendesse studiare questo contesto o dovesse sviluppare un progetto, anche complesso, inerente alla personalizzazione di applicazioni. Sarà implementato come esempio, un web service per la personalizzazione di applicazioni Android, in particolare webview, soffermandosi in particolare sulle problematiche legate alla paternità del software e delle firme digitali necessarie per la pubblicazione sul market Android. Saranno definite alcune scelte da prendere se si sviluppano applicazioni per terzi che in seguito saranno rilasciate sul market. Nella ultima parte sarà analizzata una strategia di customizzazione attraverso alcune buone pratiche, che permette attraverso l'uso di progetti libreria e direttamente nell'ambiente di sviluppo, di realizzare codice modulare e pronto per il market Android in diverse versioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il seguente lavoro di tesi ha come scopo l'illustrazione delle fasi di progetto di un impianto di microcogenerazione nell'ambito territoriale dell'Emilia Romagna. In particolare verrà fatta un'analisi economica di fattibilità, un'analisi energetica di calcolo delle prestazioni dell'impianto mediante norma UNI-TS 11300-IV, il progetto e la scelta dei componenti afferenti l'impianto di riscaldamento delle utenze e un'analisi dei documenti amministrativi disciplinanti la messa in funzione nonché la valorizzazione dell'energia elettrica immessa in rete. Il lavoro è stato eseguito su quindici impianti afferenti ad altrettante utenze con caratteristiche di utilizzo dell'impianto diversificate tra loro.