745 resultados para Canale di laminazione, profilo, laminati a caldo, controllo statistico di processo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the deviations in the solubility of CO2, CH4, and N2 at 30 °c in the mixed gases (CO2/CH4) and (CO2/N2) from the pure gas behavior were studied using the dual-mode model over a wide range of equilibrium composition and pressure values in two glassy polymers. The first of which was PI-DAR which is the polyimide formed by the reaction between 4, 6-diaminoresorcinol dihydrochloride (DAR-Cl) and 2, 2’-bis-(3, 4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). The other glassy polymer was TR-DAR which is the corresponding thermally rearranged polymer of PI-DAR. Also, mixed gas sorption experiments for the gas mixture (CO2/CH4) in TR-DAR at 30°c took place in order to assess the degree of accuracy of the dual-mode model in predicting the true mixed gas behavior. The experiments were conducted on a pressure decay apparatus coupled with a gas chromatography column. On the other hand, the solubility of CO2 and CH4 in two rubbery polymers at 30⁰c in the mixed gas (CO2/CH4) was modelled using the Lacombe and Sanchez equation of state at various values of equilibrium composition and pressure. These two rubbery polymers were cross-linked poly (ethylene oxide) (XLPEO) and poly (dimethylsiloxane) (PDMS). Moreover, data about the sorption of CO2 and CH4 in liquid methyl dietahnolamine MDEA that was collected from literature65-67 was used to determine the deviations in the sorption behavior in the mixed gas from that in the pure gases. It was observed that the competition effects between the penetrants were prevailing in the glassy polymers while swelling effects were predominant in the rubbery polymers above a certain value of the fugacity of CO2. Also, it was found that the dual-mode model showed a good prediction of the sorption of CH4 in the mixed gas for small pressure values but in general, it failed to predict the actual sorption of the penetrants in the mixed gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein purification plays a crucial role in biotechnology and biomanufacturing, where downstream unit operations account for 40%-80% of the overall costs. To overcome this issue, companies strive to simplify the separation process by reducing the number of steps and replacing expensive separation devices. In this context, commercially available polybutylene terephthalate (PBT) melt-blown nonwoven membranes have been developed as a novel disposable membrane chromatography support. The PBT nonwoven membrane is able to capture products and reduce contaminants by ion exchange chromatography. The PBT nonwoven membrane was modified by grafting a poly(glycidyl methacrylate) (GMA) layer by either photo-induced graft polymerization or heat induced graft polymerization. The epoxy groups of GMA monomer were subsequently converted into cation and anion exchangers by reaction with either sulfonic acid groups or diethylamine (DEA), respectively. Several parameters of the procedure were studied, especially the effect of (i) % weight gain and (ii) ligand density on the static protein binding capacity. Bovine Serum Albumin (BSA) and human Immunoglobulin G (hIgG) were utilized as model proteins in the anion and cation exchange studies. The performance of ion exchange PBT nonwovens by HIG was evaluated under flow conditions. The anion- and cation- exchange HIG PBT nonwovens were evaluated for their ability to selectively adsorb and elute BSA or hIgG from a mixture of proteins. Cation exchange nonwovens were not able to reach a good protein separation, whereas anion exchange HIG nonwovens were able to absorb and elute BSA with very high value of purity and yield, in only one step of purification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first goal of this study is to analyse a real-world multiproduct onshore pipeline system in order to verify its hydraulic configuration and operational feasibility by constructing a simulation model step by step from its elementary building blocks that permits to copy the operation of the real system as precisely as possible. The second goal is to develop this simulation model into a user-friendly tool that one could use to find an “optimal” or “best” product batch schedule for a one year time period. Such a batch schedule could change dynamically as perturbations occur during operation that influence the behaviour of the entire system. The result of the simulation, the ‘best’ batch schedule is the one that minimizes the operational costs in the system. The costs involved in the simulation are inventory costs, interface costs, pumping costs, and penalty costs assigned to any unforeseen situations. The key factor to determine the performance of the simulation model is the way time is represented. In our model an event based discrete time representation is selected as most appropriate for our purposes. This means that the time horizon is divided into intervals of unequal lengths based on events that change the state of the system. These events are the arrival/departure of the tanker ships, the openings and closures of loading/unloading valves of storage tanks at both terminals, and the arrivals/departures of trains/trucks at the Delivery Terminal. In the feasibility study we analyse the system’s operational performance with different Head Terminal storage capacity configurations. For these alternative configurations we evaluated the effect of different tanker ship delay magnitudes on the number of critical events and product interfaces generated, on the duration of pipeline stoppages, the satisfaction of the product demand and on the operative costs. Based on the results and the bottlenecks identified, we propose modifications in the original setup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a colorimetric indicator for food oxidation based on the detection of hexanal in gas-phase, has been developed. In fact, in recent years, the food packaging industry has evolved towards new generation of packaging, like active and intelligent. According to literature (Pangloli P. et al. 2002), hexanal is the main product of a fatty acid oxidation: the linoleic acid. So, it was chosen to analyse two kinds of potato chips, fried in two different oils with high concentration of linoleic acid: olive oil and sunflower oil. Five different formulas were prepared and their colour change when exposed to hexanal in gas phase was evaluated. The formulas evaluations were first conducted on filter paper labels. The next step was to select the thickener to add to the formula, in order to coat a polypropylene film, more appropriate than the filter paper for a production at industrial scale. Three kinds of thickeners were tested: a cellulose derivative, an ethylene vinyl-alcohol and a polyvinyl alcohol. To obtain the final labels with the autoadhesive layer, the polypropylene film with the selected formula and thickener was coat with a water based adhesive. For both filter paper and polypropylene labels, with and without autoadhesive layer, the detection limit and the detection time were measured. For the selected formula on filter paper labels, the stability was evaluated, when conserved on the dark or on the light, in order to determine the storage time. Both potato chips samples, stocked at the same conditions, were analysed using an optimised Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) method, in order to determine the concentration of volatilized hexanal. With the aim to establish if the hexanal can be considered as an indicator of the end of potato chips shelf life, sensory evaluation was conducted each day of HS-SPME-GC-MS analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the dawn of its presence on earth, the human being has been able to exploit the enzymes for its subsistence. More recent is the meeting between the enzymatic processes and the urgent need for technologies that aim to preserve our planet. In this field nowadays enzymatic catalysis is tested either to depollution/remediation as well as waste disposal. The work presented in this thesis, regarding both these two topics, is tailored on two European projects (EU 2020), MADFORWATER and TERMINUS respectively. Firstly, production of micro- and nanocatalysts via immobilization of laccases (a lignin-degrader enzyme) is performed. In the second part of the thesis laccase is applied to a tertiary treatment of wastewater with the aim to degrade 9 pharmaceutical active compounds in batch reactors. Despite several optimizations, poor degradation is reached and we did not proceed with the study of different bioreactor setups. Therefore, the focus is moved to a project concerning the production of smart multi-layer plastic packaging containing enzymes to improve the possibilities of recycling. In this field shielded nanocatalysts produced via coating techniques able to interact with redox mediators are investigated. The target substrate in this second project is produced in laboratory (i.e. polyurethane like compounds), starting from monomers whose degradation had already been tested, as a proof of concept. The first enzyme studied is still the laccase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLA is a bio-based polymer that is obtained from renewable resources and it is very promising for a sustainable packaging manufacturing. However, its gas and vapour barrier properties are not enough to comply with the requirements of MAP packaging of fresh foods, which need specific concentration of water and oxygen to avoid spoilage and to keep the organoleptic properties unaltered throughout their shelf-life. The use of waxes from natural renewable sources such as plants (e.g., candelilla wax, carnauba wax, rice bran wax, sunflower wax) or animals (e.g., beeswax) could tackle down the permeation of water vapour through the packaging without affecting its bio-based content. The core of this work is developing wax-based coatings with enhanced thermo-mechanical properties so that they can undergo thermoforming and a proper adhesion to the PLA substrate can be ensured. Chemical modifications and crosslinking of waxes are performed to produce wax-based alkyd resins. The synthesised materials are characterised both by DSC and FTIR. Films of the wax-based alkyds are produced in order to assess their water vapour permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this dissertation is the evaluation of the exploitability of corn cobs as natural additives for bio-based polymer matrices, in order to hone their properties while keeping the fundamental quality of being fully bio-derived. The first part of the project has the purpose of finding the best solvent and conditions to extract antioxidants and anti-degrading molecules from corn cobs, exploiting room and high-temperature processes, traditional and advanced extraction methods, as well as polar and nonpolar solvents. The extracts in their entirety are then analysed to evaluate their antioxidant content, in order to select the conditions able to maximise their anti-degrading properties. The second part of the project, instead, focuses on assessing chemical and physical properties of the best-behaving extract when inserted in a polymeric matrix. To achieve this, low-density polyethylene (LDPE) and poly (butylene succinate – co – adipate) (PBSA) are employed. These samples are obtained through extrusion and are subsequently characterised exploiting the DSC equipment and a sinusoidally oscillating rheometer. In addition, extruded polymeric matrices are subjected to thermal and photo ageing, in order to identify their behaviour after different forms of degradation and to assess their performances with respect to synthetically produced anti-degrading additives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modeling of metal dust explosion phenomenon is important in order to safeguard industries from potential accidents. A key parameter of these models is the burning velocity, which represents the consumption rate of the reactants by the flame front, during the combustion process. This work is focused on the experimental determination of aluminium burning velocity, through an alternative method, called "Direct method". The study of the methods used and the results obtained is preceded by a general analysis on dust explosion phenomenon, flame propagation phenomenon, characteristics of the metals combustion process and standard methods for determining the burning velocity. The “Direct method” requires a flame propagating through a tube recorded by high-speed cameras. Thus, the flame propagation test is carried out inside a vertical prototype made of glass. The study considers two optical technique: the direct visualization of the light emitted by the flame and the Particle Image Velocimetry (PIV) technique. These techniques were used simultaneously and allow the determination of two velocities: the flame propagation velocity and the flow velocity of the unburnt mixture. Since the burning velocity is defined by these two quantities, its direct determination is done by substracting the flow velocity of the fresh mixture from the flame propagation velocity. The results obtained by this direct determination, are approximated by a linear curve and different non-linear curves, which show a fluctuating behaviour of burning velocity. Furthermore, the burning velocity is strongly affected by turbulence. Turbulence intensity can be evaluated from PIV technique data. A comparison between burning velocity and turbulence intensity highlighted that both have a similar trend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of environmentally friendly products increased the interest in renewable resources as alternatives to petrochemical products. Polyhydroxyalkanoates (PHAs) are examples of such promising products, as they are biodegradable polymers with numerous potential applications. PHA production approach consists of using an open mixed microbial culture (MMC) and inexpensive feedstocks (waste or industry byproducts feedstock). The PHA process generally comprises three stages: (1) acidogenic fermentation (AF) stage (conversion of organic carbon into fermentation products); (2) culture selection stage (enrichment in PHA-storing organisms by applying Feast and Famine regime); and (3) PHA production stage (PHA accumulation up to the culture’s maximum capacity). AF of protein-rich residues results in ammonia-rich fermented streams, which can be presented as a challenge for the PHA production stage. The presence of ammonia during this stage may induce organisms to grow instead of producing PHAs. For this reason, the assessment of the effect of a high content of ammonia on PHA production it is the utmost importance. The main goal of the current project is to select a MMC enriched in PHA-accumulating organisms in conditions of high ammonia content and to evaluate the effects of ammonia presence during PHA accumulation. The culture was selected applying the Feast & Famine strategy, and fed, firstly, using a synthetic mixture of VFAs and later using a fermented stream obtained from the fermentation of protein-rich raw materials. The selected culture could accumulate up to 24% PHA per VSS with the synthetic mixture of VFAs and up to 29% for the real fermented stream. The PHA accumulation resulted in different production in the presence and absence of ammonia. Regarding to the synthetic feed, 59%wt. PHA (VSS basis) in the absence of ammonia, and 55%wt. (VSS basis) in the presence, were obtained. For the real feed, the PHA content was about 40%wt. (VSS basis) in both reactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fianco ai metodi più tradizionali, fin ora utilizzati, le tecnologie additive hanno subito negli ultimi anni una notevole evoluzione nella produzione di componenti. Esse permettono un ampio di range di applicazioni utilizzando materiali differenti in base al settore di applicazione. In particolare, la stampa 3D FDM (Fused Deposition Modeling) rappresenta uno dei processi tecnologici additivi più diffusi ed economicamente più competitivi. Gli attuali metodi di analisi agli elementi finiti (FEM) e le tecnologie CAE (Computer-Aided Engineering) non sono in grado di studiare modelli 3D di componenti stampati, dal momento che il risultato finale dipende dai parametri di processo e ambientali. Per questo motivo, è necessario uno studio approfondito della meso struttura del componente stampato per estendere l’analisi FEM anche a questa tipologia di componenti. Lo scopo del lavoro proposto è di creare un elemento omogeneo che rappresenti accuratamente il comportamento di un componente realizzato in stampa 3D FDM, questo avviene attraverso la definizione e l’analisi di un volume rappresentativo (RVE). Attraverso la tecnica dell’omogeneizzazione, il volume definito riassume le principali caratteristiche meccaniche della struttura stampata, permettendo nuove analisi e ottimizzazioni. Questo approccio permette di realizzare delle analisi FEM sui componenti da stampare e di predire le proprietà meccaniche dei componenti a partire da determinati parametri di stampa, permettendo così alla tecnologia FDM di diventare sempre di più uno dei principali processi industriali a basso costo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extra cellular vesicles are membrane bound and lipid based nano particles having the size range of 30 to 1000 nm released by a plethora of cells. Their prime function is cellular communication but in the recent studies, the potential of these vesicles to maintain physiological and pathological processes as well as their nano-sized constituents opened doors to its applications in therapeutics, and diagnostics of variety of diseases such as cancer. Their main constituents include lipids, proteins, and RNAs. They are categorized into subtypes such as exosomes, micro-vesicles and apoptotic bodies In recent studies, extracellular vesicles that are derived from plants are gaining high regard due to their variety of advantages such as safety, non-toxicity, and high availability which promotes large scale production. EVs are isolated from mammalian and plant cells using multitude of techniques such as Ultracentrifugation, SEC, Precipitation and so on. Due to the variety in the sources as well as shortcomings arising from the isolation method, a scalable and inexpensive EV isolation method is yet to be designed. This study focusses on isolation of EVs from citrus lemon juice through diafiltration. Lemon is a promising source due to its biological properties to act as antioxidant, anticancer, and anti-inflammatory agents. Lemon derived vesicles was proven to have several proteins analogous to mammalian vesicles. A diafiltration could be carried out for successful removal of impurities and it is a scalable, continuous technique with potentially lower process times. The concentration of purified product and impurities are analysed using Size Exclusion Chromatography in analytical mode. It is also considered imperative to compare the results from diafiltration with gold standard UC. BCA is proposed to evaluate total protein content and DLS for size measurements. Finally, the ideal mode of storage of EVs to protect its internals and its structure is analysed with storage tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The constantly increasing demand of clean water has become challenging to deal with over the past years, water being an ever more precious resource. In recent times, the existing wastewater treatments had to be integrated with new steps, due to the detection of so-called organic micropollutants (OMPs). These compounds have been shown to adversely affect the environment and possibly human health, even when found in very low concentrations. In order to remove OMPs from wastewater, one possible technique is a hybrid process combining filtration and adsorption. In this work, polyethersulfone multi-channel mixed-matrix membranes with embedded powdered activated carbon (PAC) were tested to investigate the membrane’s adsorption and desorption performance. Micropollutants retention was analyzed using the pharmaceutical compounds diclofenac (DCF), paracetamol (PARA) and carbamazepine (CBZ) in filtration mode, combining the PAC adsorption process with the membrane’s ultrafiltration. Desorption performance was studied through solvent regeneration, using seven different solvents: pure water, pure ethanol, mixture of ethanol and water in different concentration, sodium hydroxide and a mixture of ethanol and sodium hydroxide. Regeneration experiments were carried out in forward-flushing. At first regeneration efficiency was investigated using a single-solute solution (diclofenac in water). The mixture Ethanol/Water (50:50) was found to be the most efficient with long-term retention of 59% after one desorption cycle. It was, therefore, later tested on a membrane previously loaded with a multi-solute solution. Three desorption cycles were performed after which, retention (after 30 min) reached values of 87% for PARA and 72% for CBZ and 55% for DCF, which indicates decent regenerability. A morphological analysis on the membranes confirmed that, in any case, the regeneration cycles did not affect either the membranes’ structure, or the content and distribution of PAC in the matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic is an essential asset for the modern lifestyle, given its superiority as a material from the points of view of cost, processability and functional properties. However, plastic-related environmental pollution has become nowadays a very significant problem that can no longer be overlooked. For this reason, in recent decades, the research for new materials that could replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). PHAs are a family of biodegradable polyesters synthesized by many microorganisms as carbon and energy reserves. PHA appears as a good candidate to substitute conventional petroleum-based plastics since it has similar properties, but with the advantage of being biobased and biodegradable, and has a wide range of applications (e.g., packaging). However, the PHA production cost is almost four times higher (€5/kg) than conventional plastic manufacturing. The PHA production by mixed microbial cultures (MMC) allows to reduce production costs as it does not require aseptic conditions and it enables the use of inexpensive by-products or waste streams as these cultures are more amenable to deal with complex feedstocks. Saline wastewaters (WWs), generated by several industries such as seafood, leather and dairy, are often rich in organic compounds and, due to a strong salt inhibition, the biological treatments are inefficient, and their disposal is expensive. These saline WWs are a potential feedstock for PHA production, as they are an inexpensive raw material. Moreover, saline WWs could allow the utilization of seawater in the process as dilution and cleaning agent, further decreasing the operational costs and the environmental burden of the process. The main goal of the current project is to assess and optimize the PHA production from a mixture of food waste and brine wastewater from the fishery industry by MMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate at which petroleum based plastics are being produced, used and thrown away is increasing every year because of an increase in the global population. Polyhydroxyalkanoates can represent a valid alternative to petroleum based plastics. They are biodegradable polymers that can be produced by some microorganisms as intracellular reserves. The actual problem is represented by the production cost of these bioplastics, which is still not competitive if compared to the one of petroleum based plastics. Mixed microbial cultures can be fed with substrates obtained from the acidogenic fermentation of carbon rich wastes, such as cheese whey, municipal effluents and various kinds of food wastes, that have a low or sometimes even inexisting cost and in this way wastes can be valorized instead of being discharged. The process consists of three phases: acidogenic fermentation in which the substrate is obtained, culture selection in which a PHA-storing culture is selected and enriched eliminating organisms that do not show this property and accumulation, in which the culture is fed until reaching the maximum storage capacity. In this work the possibility to make the process cheaper was explored trying to couple the selection and accumulation steps and a halotolerant culture collected from seawater was used and fed with an artificially salted synthetic substrated made of an aqueous solution containing a mixture of volatile fatty acids in order to explore also if its performance can allow to use it to treat substrates derived from saline effluents, as these streams cannot be treated properly by bacterias found in activated sludge plants due to inhibition caused by high salt concentrations. Generating and selling the produced PHAs obtained from these bacterias it could be possible to lower, nullify or even overcome the costs associated to the new section of a treating plant dedicated to saline effluents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis focuses on the permebility analisys of Aquivion® 980 Perfluoro sulfonic acid (PFSA) polymer with particular reference to the influence of the equivalent weight (gram of polymer per molSO3H) on the permeation properties. Aquivion grade tested, indeed, were characterized by a lower equivalent weight ( 870 g/molSO3H against 980 of the present material) with respect to data present in the open literature. Permeability of different gases (CO2, N2, and CH4) was tested at different temperatures and different humidity, a parameter which greatly influences the gas transport in such hydrophilic material- Aquivion® swells consistently in humid conditions increasing its gas permeability of more than one order of magnitude with respect to values prevailing in dry conditions. Present data confirm such behavior being the permeability of all gases and vapors tested substantially increased in presence of water. Interestingly the increase in permeability results be similar for all the gases inspected, hence such enhanced permeation capability is not associated to a selectivity loss that happens in polymeric membranes. Although, the results, of CO2, are lower compared to those obtained with the different grades, with lower equivalent weight, of Aquivion, thus suggesting that an increase of this parameter is detrimental for both permeability and selectivity of the membranes with respect to CO2. This is likely related to the fact that a lower content of SO3H groups makes it difficult to have an interconnected water domain inside the membranes. A modeling approach was considered to describe the experimental data and to give a better insight into the observed behavior, unfortunately, it resulted not sensitive enough to catch the differences between the gas permeability in PSFAs with high and low equivalent weight. The latter were indeed usually contained within 10-20% which results to be the in the same range of model precision when used in a predictive way.