148 resultados para sintesi asimmetrica organocatalisi reazioni tandem conformeri diidropiranoni-spiroossindoli vinilogia chinidina-squarammide chiralità base-catalisi H-bonding-catalysis
Resumo:
I carboidrati, come il D-glucosio, sono i principali costituenti della biomasse e potrebbero rappresentare un’alternativa concreta alla chimica tradizionale del petrolio per la produzione dei building-blocks, utili quest’ultimi per lo sviluppo della filiera produttiva della chimica industriale. Dal D-glucosio è possibile ottenere epimeri importanti per la medicina o zuccheri largamente utilizzati in campo alimentare come il D-fruttosio tramite isomerizzazione strutturale del D-glucosio. Attualmente, la maggior parte dei metodi di sintesi di questa molecole prevedono l’utilizzo enzimi, o la catalisi omogenea con impiego di grandi quantità di basi e acidi minerali dannosi per l’ambiente. Lo scopo di questo lavoro è stato lo studio di innovativi catalizzatori eterogenei capaci operare in soluzione acquosa la conversione acido catalizzata del D-glucosio in prodotti di epimerizzazione e isomerizzazione strutturale. I catalizzatori dei nostri test sono stati caratterizzati tramite tecniche BET, ATR-IR, DRUv-Vis e XRD. Lo studio, quindi, è stato focalizzato sulle valutazioni delle prestazioni catalitiche di questi sistemi e sull’individuazione, tramite caratterizzazione strumentale, degli ioni costituenti questi solidi responsabili delle alte selettività nelle reazioni di riarrangiamento strutturale del D-glucosio. Gli studi condotti hanno portato alla conclusione che, grazie all’utilizzo di questi sistemi inorganici è possibile ottenere con alte selettività prodotti di riarrangiamento strutturale del D-glucosio, evitando al contempo la degradazione del substrato che in genere accompagna queste reazioni in condizioni di catalisi acida. Ulteriori studi riguardanti questi catalizzatori apriranno con buone probabilità la strada allo sviluppo di un nuovo processo industriale per la sintesi di questi zuccheri derivati, rendendo possibile una via produttiva sostenibile da un punto di vista economico che ambientale.
Resumo:
Oggi il mercato mondiale dell'anidride maleica (AM) è in continua espansione grazie ad un numero sempre crescente di applicazioni finali e sviluppo di nuove tecnologie industriali. La AM viene impiegata nella produzione di resine poliestere insature e resine alchidiche e nella produzione di chemicals a più alto valore aggiunto. Il processo di sintesi è tutt’ora basato sull'ossidazione selettiva del benzene e del n-butano. Con l’aumento delle emissione di gas serra, legate all’impiego di materie di origine fossile e la loro continua diminuzione, si stanno studiando nuovi processi basati su materie derivanti da fonti rinnovali. Tra i vari processi studiati vi è quello per la sintesi di AM, i quali utilizzano come molecola di furfurale, 5-idrossimetilfurfurale e 1-butanolo; tutte queste presentano però il problema di un costo superiore rispetto alle molecole tutt’ora usate. Ad oggi una delle molecole ottenibili da fonti rinnovabili avente un costo competitivo alle materie derivanti da fonti fossili è il bio-etanolo. Essendo nota la possibilità di trasformare dell’etanolo in composti a 4 atomi di carbonio (C4) come 1-butanolo (reazione di Guerbet) e in 1,3- butadiene (processo Lebedev) su ossidi misti Mg/Si e la loro trasformazioni in AM, è’ dunque possibile ipotizzare un processo operante in fase gas che accoppi entrambi i processi. Lo scopo di questo lavoro di tesi è stato quello di effettuare uno studio su sistemi catalitici mediante differenti approcci impiantistici. Il primo ha previsto l’impiego di un sistema detto “a cascata” nel quale è stato accoppiato il sistema misto a base di Mg/Si/O, per la trasformazione dell’etanolo a C4, e il pirofosfato di vanadile (VPP), per l’ossidazione selettiva di quest’ultimi in AM. Il secondo approccio ha previsto l’impiego di un unico sistema multifunzionale in grado di catalizzare tutti gli step necessari. In quest’ultimo caso, i sistemi studiati sono stati il Mg2P2O7 ed un sistema costituito da VPP DuPont sul quale è stato depositato MgO. I catalizzatori sono stati caratterizzati mediante diffrattometria a raggi X, spettroscopia Raman e analisi dell’area superficiale mediante metodo BET, mentre i test catalitici sono stati condotti su un impianto di laboratorio con un reattore assimilabile ad un modello di tipo PFR.
Resumo:
Lo scopo di questo elaborato di tesi è sintetizzare microcapsule di dimensioni non superiori ai 20 micron, contenenti un composto termocromico in modo da funzionare come indicatori di temperatura. Le capsule devono essere quindi in grado di variare la propria colorazione in funzione della temperatura del mezzo in cui sono disperse o dell’ambiente circostante, senza degradarsi. Il core è costituito da una miscela contenente un pigmento termocromico il cui colore varia da verde intenso se mantenuto a temperature ambiente, fino ad un verde pallido, quasi bianco, per temperature inferiori ai 10°C. Il core è stato quindi incapsulato in uno shell, costituito da una resina melammina-formaldeide (MF) mediante polimerizzazione in situ. Questo processo prevede la sintesi di un prepolimero MF che viene poi fatto reticolare in presenza di una emulsione del core in soluzione acquosa. Per prima cosa è stato ottimizzata la sintesi del prepolimero a partire da una soluzione acquosa di melammina e formaldeide. Vista la tossicità della formaldeide (H341-H350-H370) è stata studiata anche la possibilità di sostituire questo reagente con la sua forma polimerica (paraformaldeide) che a 45°C circa degrada rilasciando formaldeide in situ. In questo modo il processo risulta molto più sicuro anche in previsione di un suo possibile sviluppo industriale. In seguito è stato ottimizzato il processo di microincapsulazione in emulsione su vari tipi di core e studiando l’effetto di vari parametri (pH, temperatura, rapporto core/shell, tipo di emulsionante ecc.), sulle dimensioni e la stabilità delle microcapsule finali. Queste sono quindi state caratterizzate mediante spettrometria Infrarossa in trasformata di Fourier (FT-IR) e la loro stabilità termica è stata controllata tramite analisi TermoGravimetrica (TGA). Il processo di reticolazione (curing) della resina, invece, è stato studiato tramite Calorimetria Differenziale a Scansione (DSC). Le microcapsule sono inoltre state analizzate tramite Microscopio Elettronico (OM) e Microscopio Elettronico a Scansione (SEM).
Resumo:
Il grafene è un cristallo bidimensionale di atomi di carbonio, isolato per la prima volta nel 2004 da due fisici che per questo risultato vinsero il premio Nobel per la Fisica nel 2010. Il grafene possiede proprietà chimiche e fisiche superiori, quali un’elevata resistenza chimica e meccanica e un’eccellente conducibilità termica ed elettrica. Inoltre possiede altre due caratteristiche che lo rendono particolarmente promettente in diversi ambiti applicativi: leggerezza e trasparenza ottica. In questo elaborato ho descritto le attività svolte seguendo le ricerche che vengono svolte al CNR-IMM di Bologna, dove questo materiale viene prodotto tramite la tecnica di Chemical Vapor Deposition e studiato per l’integrazione in dispositivi elettronici ed elettro-meccanici innovativi. Durante la mia esperienza di laboratorio all’IMM ho seguito i procedimenti che portano al trasferimento del grafene sintetizzato su substrati catalitici di rame sui substrati finali per la successiva integrazione nella tecnologia del silicio. Nell’elaborato vengono da prima descritte la struttura cristallina ed elettronica e successivamente presentate alcune proprietà di cui gode e messe in relazione con i materiali attualmente in uso. Segue una breve trattazione bibliografica di alcune delle principali tecniche di produzione del grafene, trattando più nel dettaglio la tecnica CVD attualmente in uso per la sintesi di grafene all’interno dei laboratori del CNR-IMM di Bologna. La parte principale di questa esperienza di laboratorio è stato di seguire in prima persona le attuali ricerche del gruppo di lavoro per la messa a punto di un metodo alternativo che utilizza il ciclododecano per il trasferimento del grafene sintetizzato su rame al posto del classico strato sacrificale polimerico di PMMA. Nell’elaborato il confronto tra le due tecniche viene eseguito confrontando i risultati del trasferimento analizzando la morfologia dei campioni finali con tecniche di microscopia elettronica in scansione
Resumo:
Uno dei concetti chiave dell'impiego della nanotecnologia è quello dell'ingegnerizzazione dei materiali alla nano-scala. Si procede così alla realizzazione di materiali aventi morfologia, struttura e composizione ottimizzate per migliorarne specifiche proprietà in maniera controllata. In questo lavoro sono stati realizzati campioni nanoparticellari a base di magnesio con la tecnica (R-)IGC (Reactive or Inert Gas Condensation) allo scopo di studiare come l'atmosfera nella quale vengono sintetizzati ne influenzi le proprietà morfologiche e strutturali, al fine di poterne controllare la crescita per impieghi specifici. In particolare, si sono voluti analizzare i risultati ottenuti in diverse situazioni: nel caso in cui la sintesi avvenga in un'atmosfera contenente una piccola concentrazione di ossigeno e nel caso della coevaporazione di magnesio e titanio in atmosfera inerte o contenente idrogeno. I campioni sono poi stati analizzati dal punto di vista morfologico, composizionale e strutturale mediante microscopia a scansione elettronica e diffrazione a raggi X. E' stato mostrato che la presenza controllata di ossigeno durante la sintesi permette di realizzare strutture core-shell di dimensione media 40nm e che la co-evaporazione di magnesio e titanio permette la sintesi di nanoparticelle di dimensioni medie anche inferiori ai 12nm. La presenza di idrogeno durante l'evaporazione permette inoltre di crescere nanoparticelle contenenti idruro di titanio senza dover ricorrere ad una idrurazione successiva. Le proprietà termodinamiche e cinetiche di (de)-idrurazione dei campioni sintetizzati sono state misurate utilizzando sia un apparato barometrico Sievert, sia effettuando un'analisi direttamente nel sito di crescita. I campioni realizzati non mostrano una termodinamica significativamente diversa da quella del magnesio bulk, mentre le cinetiche dei processi di assorbimento e desorbimento risultano notevolmente più rapide.
Resumo:
Con questa tesi verrà spiegata l'intrinseca connessione tra la matematica della teoria dei numeri e l'affidabilità e sicurezza dei crittosistemi asimmetrici moderni. I principali argomenti trattati saranno la crittografia a chiave pubblica ed il problema della verifica della primalità. Nei primi capitoli si capirà cosa vuol dire crittografia e qual è la differenza tra asimmetria e simmetria delle chiavi. Successivamente verrà fatta maggiore luce sugli utilizzi della crittografia asimmetrica, mostrando tecniche per: comunicare in modo confidenziale, scambiare in modo sicuro chiavi private su un canale insicuro, firmare messaggi, certificare identità e chiavi pubbliche. La tesi proseguirà con la spiegazione di quale sia la natura dei problemi alla base della sicurezza dei crittosistemi asimmetrici oggigiorno più diffusi, illustrando brevemente le novità introdotte dall'avvento dei calcolatori quantistici e dimostrando l'importanza che riveste in questo contesto il problema della verifica della primalità. Per concludere verrà fatta una panoramica di quali sono i test di primalità più efficienti ed efficaci allo stato dell'arte, presentando una nuova tecnica per migliorare l'affidabilità del test di Fermat mediante un nuovo algoritmo deterministico per fattorizzare gli pseudoprimi di Carmichael, euristicamente in tempo O~( log^3{n}), poi modificato sfruttando alcune proprietà del test di Miller per ottenere un nuovo test di primalità deterministico ed euristico con complessità O~( log^2{n} ) e la cui probabilità di errore tende a 0 con n che tende ad infinito.
Resumo:
La Chemical Vapor Deposition (CVD) permette la crescita di sottili strati di grafene con aree di decine di centimetri quadrati in maniera continua ed uniforme. Questa tecnica utilizza un substrato metallico, solitamente rame, riscaldato oltre i 1000 °C, sulla cui superficie il carbonio cristallizza sotto forma di grafene in un’atmosfera attiva di metano ed idrogeno. Durante la crescita, sulla superficie del rame si decompone il metano utilizzato come sorgente di carbonio. La morfologia e la composizione della superficie del rame diventano quindi elementi critici del processo per garantire la sintesi di grafene di alta qualità e purezza. In questo manoscritto si documenta l’attività sperimentale svolta presso i laboratori dell’Istituto per la Microelettronica e i Microsistemi del CNR di Bologna sulla caratterizzazione della superficie del substrato di rame utilizzato per la sintesi del grafene per CVD. L’obiettivo di questa attività è stato la caratterizzazione della morfologia superficiale del foglio metallico con misure di rugosità e di dimensione dei grani cristallini, seguendo l’evoluzione di queste caratteristiche durante i passaggi del processo di sintesi. Le misure di rugosità sono state effettuate utilizzando tecniche di profilometria ottica interferometrica, che hanno permesso di misurare l’effetto di livellamento successivo all' introduzione di un etching chimico nel processo consolidato utilizzato presso i laboratori dell’IMM di Bologna. Nell'ultima parte di questo manoscritto si è invece studiato, con tecniche di microscopia ottica ed elettronica a scansione, l’effetto di diverse concentrazioni di argon e idrogeno durante il trattamento termico di annealing del rame sulla riorganizzazione dei suoi grani cristallini. L’analisi preliminare effettuata ha permesso di individuare un intervallo ottimale dei parametri di annealing e di crescita del grafene, suggerendo importanti direzioni per migliorare il processo di sintesi attualmente utilizzato.
Resumo:
La messa a punto di processi in grado di utilizzare le biomasse lignocellulosiche per la produzione di molecole piattaforma, utilizzabili per la sintesi di intermedi per la chimica fine, l’industria polimerica ed i combustibili, è attualmente un argomento di ricerca di grande interesse. Tra le molecole più studiate vi è la furfurale (FU), che si può ottenere mediante disidratazione dei monosaccaridi pentosi contenuti nei materiali lignocellulosici. Il prodotto di riduzione della furfurale, l’alcol furfurilico (FAL), è commercialmente interessante perché trova applicazione nell’industria polimerica e viene utilizzato come intermedio nella produzione di lisina, vitamina C, lubrificanti e agenti dispersanti. In letteratura sono riportati numerosi processi che permettono di ottenere questo prodotto, utilizzando la riduzione catalitica con H2 in pressione, che però presentano problemi di selettività, costo, sostenibilità e tossicità del catalizzatore utilizzato. La possibilità di effettuare la riduzione selettiva della furfurale senza fare ricorso all’idrogeno molecolare, utilizzando un processo di H-transfer e catalizzatori eterogenei a base di ossidi misti, risulta quindi di estremo interesse perché permette di eliminare i suddetti problemi. Lo scopo di questa tesi è stato quello di ottimizzare il processo, confrontando catalizzatori basici, quali MgO, CaO e SrO ottenuti tramite calcinazione a diverse temperature dei rispettivi precursori. In particolare, è stata valutata l’influenza che la temperatura di calcinazione, il tempo e la temperatura di reazione hanno sulla reattività e la stabilità dei sistemi catalitici sintetizzati. La caratterizzazione dei catalizzatori tramite diffrazione ai raggi X (XRD), analisi termiche (TGA, DTA) e misure di area superficiale con tecnica BET ha permesso di correlare le proprietà chimico-fisiche dei materiali con la loro attività catalitica.
Resumo:
Supported by the increasing sustainable awareness, glycerol carbonate has gained much interest over the last 20 years because of its versatile reactivity and as a way to valorize waste glycerol. Numerous synthesis pathways for this molecule were identified, some of them very promising and on the verge of being applied at an industrial scale. Here, we report a study aimed at valorizing glycerol carbonate as chemical intermediate, in order to synthesize 2-hydroxymethyl-1,4-benzodioxane (HMB). This molecule finds important applications as key intermediate for the synthesis of a broad class of pharmaceuticals and therapeutic agents. Concerning the presence of a stereogenic center on the hydroxymethyl group, due to the pharmaceutical importance to obtain and isolate one single enantiomer, , nowadays HMB is obtained through batch scale process, using a multi-reaction approach and starting from reagents of the chiral pool. We carried out the reaction from a solution of glycerol carbonate and catechol 2:1. In the presence of a simple basic catalyst, at high temperatures, it was possible obtain total reactants conversion and high yield to HMB in few hours reaction time. Also, in the aim of developing a process which might adhere the principles of Green Chemistry, we avoided the use of solvents. Similar results were obtained using a 1:1 feed ratio of reactants, even if selectivity to HMB decrease, due to the presence of side reactions. A complete study of the reaction mechanism is proposed in this thesis.
Resumo:
In this work, we have examined the activity and selectivity of new catalysts for the single-stage production of methyl isobutyl ketone (MIBK, 4- methyl-2-pentanone) from acetone (both in liquid and gas phase), using a fixed bed reactor operated in the temperature range between 373 and 473 K. The main reaction pathways for the synthesis of MIBK from acetone are given in Fig.1. The first step is the self condensation of acetone to diacetone alcohol (DAA, 4-hydroxy-4-methyl-2-pentanone); the second step is the dehydration of DAA to mesityl oxide (MO, 4-methyl-3-penten-2-one); the final step is the selective hydrogenation of the carbon–carbon double bond of MO to form MIBK. The most commonly observed side reactions are over-condensations and unselective hydrogenations (also shown in Fig.1). Two types of catalysts were studied: i)Pd supported on MgO-SiO2 mixed oxides with ratio of Mg to Si, synthetized using Ohnishi’s method and ii)Pd supported on alumina doped with 5% or 10% of MgO. The different Mg-Si and Mg-Al catalysts were characterized by different techniques (XRD, BET, SEM, NH3-TPD and CO2-TPD) and tested under different conditions in the condensation of acetone to diacetone alcohol and its dehydration to mesityl oxide to enhance the activity. Palladium was chosen as metal component, and its hydrogenation activity was studied. A low hydrogenation activity negatively affects the acetone conversion and promotes the production of mesityl oxide. Hydrogenation conditions being too severe may favor the unwanted hydrogenation of acetone to 2-propanol and of MIBK to methyl isobutyl carbinol (MIBC, 4-methyl-2-pentanol) but this effect is less detrimental to the MIBK selectivity than an unsufficient hydrogenation activity.
Resumo:
The Chemically Modified Electrodes (CME) are widely used in electroanalytical chemistry as chemical sensors. The interest in the covalent anchoring of a redox mediator on the electrode surface is increasing, because it allows the sensibility and the selectivity of this kind of systems to improve. My work is situated in this field of research and involves the synthesis of new Iron(0) complexes that contain cyclopentadienone, N-heterocyclic carbene (NHC) and carbonyl ancillary ligands. These complexes have shown electrochemical properties similar to those of ferrocene (organometallic compound widely used as electrochemical sensor). These complexes have been properly functionalized with a EDOT group in the NHC ligand side chain that it was after used for the realization of Electrochemically Modified PEDOT thanks to copolymerization reaction between the functionalized complex and the EDOT in different amounts. All the synthetic steps were assisted by suitable characterizations (NMR, IR, ESI-MS, cyclic voltammetry and X-ray for the monomeric compound as imidazolium salt and NHC functionalized complexes; cyclic voltammetry, IR e SEM for the copolymers). The properties of the polymer as a selective sensor was preliminarily investigated for dopamine and 2-propanol.
Resumo:
Le tradizionali tecniche usate per l’analisi della struttura e della composizione comprendono, tra le altre, microscopia ottica, microscopia elettronica, diffrazione a raggi X e analisi chimica. In generale però, la maggior parte di questi metodi richiede una procedura di preparazione che può modificare la struttura o la composizione del campione. È necessario infatti che il campione non subisca alterazioni particolari durante la fase di preparazioni in modo tale che le condizioni fisiologiche rimangano il più possibile simili a quelle che si hanno in situ. Una tecnica che ultimamente sta diventando sempre più significativa in ambito biomedico è la spettroscopia Raman. Innanzitutto con l’analisi Raman la quantità di materiale da studiare per ottenere buoni risultati è minima, visto che possono essere studiati campioni che vanno dai micro ai nanogrammi; inoltre, possono essere analizzati campioni umidi e a pressione atmosferica, condizioni che rispecchiano verosimilmente quelle fisiologiche. Questo tipo di analisi è inoltre vantaggiosa dato che riesce a identificare diversi composti chimici, ha un’elevata risoluzione spaziale (0.6-1µm), riuscendo quindi ad analizzare campioni molto piccoli, ha tempi di misura brevi e può essere utilizzato più volte sullo stesso campione senza che quest’ultimo venga danneggiato. Nel seguente elaborato si sono riportati i risultati di diversi studi condotti sull’idrossiapatite naturale/biologica e sintetica ottenuti mediante questa tecnica spettroscopica. In particolare, ci si è soffermati sulla diversa concentrazione di OH- presente nell’apatite stechiometrica rispetto a quella biologica e di come tale concentrazione sia influenzata dalla presenza o meno dello ione carbonato. Si riportano inoltre le analisi condotte su campioni sintetici e biologici per comprendere se le molecole di acqua si trovino all’interno della struttura del minerale (acqua di bulk) o se siano solamente assorbite in superficie.
Resumo:
Questa tesi è incentrata sullo studio e la determinazione del flusso neutronico della facility nTOF (neutron Time Of Flight) del CERN di Ginevra nel corso della campagna sperimentale del 2016. L'esperimento è finalizzato alla misura della sezione d'urto della reazione di cattura neutronica da parte degli isotopi dispari di gadolinio, 155Gd e 157Gd. In particolare l'analisi verrà condotta in modo da ottenere dati sperimentali nello spettro di energie da neutroni termici (10-2 eV) a 1.0 eV e migliorare i dati già esistenti per energie fino a 1.0 MeV. Dopo aver ricordato le motivazioni scientifiche e tecnologiche che sono alla base del progetto di ricerca, si descrivono le caratteristiche della facility nTOF e si trattano i fondamenti delle reazioni nucleari e le tecniche del tempo di volo, di misura di flusso e di cattura utilizzate nel corso dell'esperimento. Nella parte finale del lavoro si presentano i dati sperimentali acquisiti sul flusso neutronico, la cui accurata conoscenza è fondamentale per la misura di sezioni d'urto di reazioni indotte da neutroni. I risultati ottenuti sono quindi stati elaborati e confrontati con i dati precedenti per poter essere validati e per poter verificare eventuali discrepanze. Dalle analisi dei dati si deduce come la precisione ottenuta sulla determinazione del flusso sia ottimale per i successivi studi che verranno condotti sulla sezione d'urto degli isotopi dispari di gadolinio.