306 resultados para produzione idrogeno processo steam-iron reforming etanolo ossidi misti a base di ferro


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a study on the feasibility of a new process, aimed at the production of hydrogen from water and ethanol (a compound obtained starting from biomasses), with inherent separation of hydrogen from C-containing products. The strategy of the process includes a first step, during which a metal oxide is contacted with ethanol at high temperature; during this step, the metal oxide is reduced and the corresponding metallic form develops. During the second step, the reduced metal compound is contacted at high temperature with water, to produce molecular hydrogen and with formation of the original metal oxide. In overall, the combination of the two steps within the cycle process corresponds to ethanol reforming, where however COx and H2 are produced separately. Various mixed metal oxides were used as electrons and ionic oxygen carriers, all of them being characterized by the spinel structure typical of M-modified non-stoichiometric ferrites: M0,6Fe2,4O4 (M = Co, Mn or Co/Mn). The first step was investigated in depth; it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation. The new materials were tested in terms of both redox proprieties and catalytic activity to generate hydrogen. Still the problem of coke formation remains the greater challenge to solve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modified ferrites with a generic formula of MFe2O4 (where M=Co, Cu, Mn and their combination: Cu/Co, Cu/Mn and Co/Mn) were studied as potentially attractive ionic oxygen and electron carrier materials for the production of “clean H2” via the Chemical Loop Reforming (CLR) of bio-ethanol. The conventional CLR process consists of 2 steps: 1st - the reduction step with ethanol; 2nd - the re-oxidation step with water. The synthesized materials were tested in a laboratory plant in terms of both redox properties and catalytic activity to generate hydrogen during the re-oxidation step with water steam over previously pre-reduced samples. The obtained results showed that CuFe2O4, Cu0.5Co0.5Fe2O4, Cu0.5Mn0.5Fe2O4 and CoFe2O4 within 20 min of ethanol reduction reached almost a complete reduction, and, as a consequence, the higher yields to H2 produced during the re-oxidation step with steam. On the other hand, incorporation of Mn-cations greatly affects the redox properties of a resulted spinel (MnFe2O4 and Co0.5Mn0.5Fe2O4) leading to its lower reducibility, caused by the formation of a hardly reducible layer of MnxFeyO oxide. Moreover, the presence of Mn-cations effectively reduces the amount of coke formed during the anaerobic reduction step with ethanol and hence avoids a fast deactivation of the material. Modification of the conventional CLR process with an addition of the 3rd regeneration step (carried out with air) was done in order to increase the stability of the looping material and to overcome the deactivation problems, such as: a coke deposition/accumulation and an incomplete re-oxidation of M0 during the 2nd step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A causa delle questioni economiche ed ambientali legate alla sostenibilità dei processi petrolchimici, recentemente l'industria chimica ha focalizzato il proprio interesse nello sviluppo di processi per la produzione di chemicals, che utilizzino materiali di partenza rinnovabili. L'etanolo, prodotto per via fermentativa, sembra essere uno dei bio-building block più promettenti e versatili e può essere utilizzato per numerose applicazioni. È noto da tempo che l’etanolo può reagire su catalizzatori costituiti da ossidi misti con caratteristiche acido-base a dare numerosi composti chimici tra cui acetaldeide, 1,3-butadiene, 1-butanolo e 2-butenale. Nonostante il lungo impiego dell’etanolo nell’industria chimica, il meccanismo di formazione di composti C4 a partire da etanolo è ancora però materia di dibattito. Il meccanismo generalmente accettato si basa sulle seguenti reazioni chiave: deidrogenazione di etanolo ad acetaldeide e condensazione aldolica di due molecole di acetaldeide. Tuttavia in letteratura sono riportate anche altre proposte alternative. In questo lavoro è stato studiato il processo di trasformazione di etanolo su catalizzatori a base di MgO e sistemi misti Mg/SiO, attraverso esperimenti di reattività condotti in un micro-impianto da laboratorio, al fine di fare chiarezza sul meccanismo di formazione di composti C4 a partire da etanolo. In particolare è stato condotto uno studio meccanicistico utilizzando MgO come catalizzatore modello, materiale che possiede esclusivamente proprietà basiche, ritenute essenziali per catalizzare la condensazione di molecole C2. Inoltre, è stata investigata l’influenza delle caratteristiche acido-base del catalizzatore sulla selettività del processo di conversione di etanolo, studiandone la reattività su materiali costituiti da ossidi misti Mg/Si/O, con diverso rapporto atomico tra i due cationi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il forte incremento della popolazione mondiale, la continua crescita del tenore di vita e del livello di consumi hanno portato negli ultimi decenni ad un enorme aumento della richiesta mondiale di energia. Diviene pertanto fondamentale ricercare nuovi metodi altamente efficienti di produzione, trasporto ed utilizzo di energia, che migliorino la qualità della vita dell’uomo e nello stesso tempo salvaguardino il clima e l’ambiente. Proprio a questo proposito, in questi ultimi anni, vi è un crescente interesse nei riguardi della molecola di idrogeno, H2. Ad oggi è impossibile sostituire i combustibili fossili con l’idrogeno, per motivi prettamente tecnologici (difficoltà nello stoccaggio e nel trasporto) e per motivi legati alla sua produzione. Infatti, l’idrogeno è sì uno degli elementi più presenti in natura, ma non come sostanza gassosa pura bensì in forma combinata, generalmente acqua, quindi per produrlo è necessario rompere il legame con l’elemento con cui è combinato, consumando energia; questo spiega il motivo per cui l’idrogeno viene considerato un vettore di energia e non una fonte di energia. La produzione di idrogeno, o meglio del suo equivalente costituito da un flusso di elettroni e protoni, dall’acqua è un processo che avviene in natura, precisamente nelle cellule vegetali durante la prima fase della fotosintesi clorofilliana. Tale processo mostra l’importanza dei complessi bio-inorganici che vi partecipano, ai quali si ispira la ricerca di nuovi efficienti catalizzatori per la produzione di idrogeno mediante scissione catalitica dell’acqua (water splitting). Una classe di enzimi particolarmente studiata, in quest’ambito, è costituita dalle idrogenasi; la maggior parte di questi enzimi contengono un frame dinucleare Ni-Fe o Fe-Fe. Numerosi gruppi di ricerca sono fortemente impegnati nell’obiettivo di sintetizzare complessi simili a questi enzimi (enzyme mimics), e con prestazioni paragonabili, in modo da produrre idrogeno in modo efficiente e rispettando i principi di sostenibilità ambientale ed economica. Il gruppo di ricerca presso il quale è stato svolto il tirocinio oggetto del presente elaborato si occupa dello studio di complessi metallorganici caratterizzati dalla presenza di un “core” metallico costituito da due atomi di Ferro adiacenti coordinati tra loro mediante leganti a ponte diversamente funzionalizzati. Obiettivo del tirocinio è stato quello di verificare l’efficienza catalitica di alcuni di questi complessi nel promuovere il processo di interconversione H+/H2; per fare ciò, si è fatto ricorso ad un approccio elettrochimico, sfruttando la tecnica della voltammetria ciclica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La furfurale (FU) rappresenta una delle più importanti molecole piattaforma per la produzione di biocarburanti e prodotti chimici a partire dalle biomasse. L’elevato interesse che si nutre nei confronti di tale molecola è giustificato dall’ampio spettro di reazioni che possono essere condotte su di essa al fine di ottenere prodotti di interesse industriale, quali, ad esempio, il furfuril alcool (FAL) e il metilfurano (MFU). I processi attualmente utilizzati per la produzione di tali molecole usano H2 e costosi catalizzatori a base di metalli nobili. Un’alternativa interessante a questi processi è quella che prevede di utilizzare un alcool come fonte di idrogeno tramite un processo di H-transfer su catalizzatori a base di ossidi misti. Lo scopo di questa tesi è stata quindi la sintesi e lo studio delle proprietà catalitiche del sistema FeVO4, nella reazione di riduzione in fase gas della furfurale, usando metanolo come agente di H-transfer. Il catalizzatore è stato ottenuto mediante coprecipitazione dei precursori di Fe e V e successivamente calcinato. La caratterizzazione Raman e XRD ha confermato la bontà della procedura di sintesi. I risultati dei test catalitici hanno mostrato che nelle condizioni ottimali il sistema è altamente selettivo nella riduzione della FU a MFU, mentre i prodotti secondari sono 2-vinilfurano e 2,5-dimetilfurano. A causa della deposizione di specie carboniose sulla superficie del catalizzatore, la conversione della FU tende a diminuire col passare delle ore di reazione. Tuttavia il sistema risulta rigenerabile grazie ad un trattamento in aria a 450°C. Inoltre l’analisi XRD dei catalizzatori scaricati ha mostrato che l’ossido misto subisce un processo di riduzione a seguito dell’interazioni con il metanolo, in quanto la stechiometria Fe:V:O passa dal valore di 1:1:4 a valori di 1:1:3. Sulla base di questi dati il processo di produzione del MFU è stato ulteriormente ottimizzato effettuando un pretrattamento riduttivo del catalizzatore prima dei test catalitici.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’idrogeno è un elemento di elevato interesse economico, con una produzione industriale che supera i 55 x 1010 m3/anno e notevoli prospettive di sviluppo delle sue applicazioni. Attualmente l’idrogeno è prodotto principalmente in impianti di larga scala (circa 1000 m3/h) da combustibili fossili attraverso processi di steam reforming ed ossidazione parziale catalitica. Per aumentare la produzione di idrogeno un ruolo fondamentale è svolto dalla reazione di water gas shift (WGS) che abbatte il contenuto di CO, massimizzando la produzione di idrogeno. La reazione è condotta industrialmente in due stadi, operanti ad alta temperatura (HTS, circa 350 °C) e bassa temperatura (LTS, circa 250 °C), utilizzando rispettivamente catalizzatori a base di ferro o rame. Tuttavia, è evidente l’interesse per nuove formulazioni in grado di operare in un unico stadio a temperatura intermedia (MTS), mantenendo le caratteristiche ottimali di attività e stabilità. In questo lavoro di tesi, condotto in collaborazione con AIR LIQUIDE (F), è stato affrontato uno studio della reazione di WGS finalizzato allo sviluppo di nuove formulazioni attive e stabili nell’MTS. In particolare, sono stati sintetizzati precursori idrotalcitici Cu/Zn/Al (contenenti carbonati o silicati), con bassi contenuti di rame (diversamente da quanto riportato in letteratura), modulandone le proprietà chimico-fisiche, l’attività catalitica e la stabilità con il tempo di reazione. Si è osservato come i catalizzatori con minori contenuti di rame ed ottenuti da precursori contenenti carbonati mostrassero un’elevata attività e selettività nell’MTS, raggiungendo valori di conversione del CO analoghi a quelli all’equilibrio termodinamico già a 300 °C, indipendentemente dai valori del rapporto S/DG e del tempo di contatto. Tutti i catalizzatori mostrano un’elevata stabilità con il tempo di reazione, con incrementi del quantitativo del CO in uscita dopo 100h di circa lo 0,7 % v/v. I catalizzatori scaricati dopo le prove catalitiche evidenziano gli effetti dei processi di sinterizzazione (diminuzione dell’area superficiale ed incremento delle dimensioni dei cristalliti), la cui entità diminuisce al diminuire del contenuto di rame. Infine, confrontando l’attività dei migliori catalizzatori preparati in questo lavoro di tesi con quella di uno dei più utilizzati catalizzatori commerciali per la reazione di WGS a bassa temperatura, si sono osservati valori di attività analoghi, raggiungendo quelli di equilibrio per temperature  300°C, ma con una attività significativamente superiore nelle condizioni LTS, soprattutto considerando il valore del tempo di contatto inferiore a quelli comunemente utilizzati negli impianti industriali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le biomasse sono attualmente la più promettente alternativa ai combustibili fossili per la produzione di sostanze chimiche e fuels. A causa di problematiche di natura etica la ricerca oggi si sta muovendo verso l'uso delle biomasse che sfruttano terreni non coltivabili e materie prime non commestibili, quali la lignocellulosa. Attualmente sono state identificate diverse molecole piattaforma derivanti da biomasse lignocellulosiche. Tra queste ha suscitato grande interesse la 2-furaldeide o furfurale (FU). Tale molecola può essere ottenuta mediante disidratazione di monosaccaridi pentosi e possiede elevate potenzialità; è infatti considerata un intermedio chiave per la sintesi di un’ampia varietà di combustibili alternativi come il metilfurano (MFU) e prodotti ad elevato valore aggiunto per l’industria polimerica e la chimica fine come l’alcol furfurilico (FAL). In letteratura tali prodotti vengono principalmente ottenuti in processi condotti in fase liquida mediante l’utilizzo di catalizzatori eterogenei a base di metalli nobili come: Ni-Co-Ru-Pd, Pt/C o Pt/Al2O3, NiMoB/γ-Al2O3, in presenza di idrogeno molecolare come agente riducente. La riduzione del gruppo carbonilico mediante l’utilizzo di alcoli come fonti di idrogeno e catalizzatori a base di metalli non nobili tramite la reazione di Meerwein–Ponndorf–Verley (MPV), rappresenta un approccio alternativo che limita il consumo di H2 e permette di utilizzare bio-alcoli come donatori di idrogeno. Lo scopo di questo lavoro di tesi è stato quello di mettere a punto un processo continuo, in fase gas, di riduzione della FU a FAL e MFU, utilizzando metanolo come fonte di idrogeno tramite un meccanismo di H-transfer. In dettaglio il lavoro svolto può essere così riassunto: Sintesi dei sistemi catalitici MgO e Mg/Fe/O e loro caratterizzazione mediante analisi XRD, BET, TGA/DTA, spettroscopia RAMAN. Studio dell’attività catalitica dei catalizzatori preparati nella reazione di riduzione in fase gas di FU a FAL e MFU utilizzando metanolo come fonte di idrogeno.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La messa a punto di processi in grado di utilizzare le biomasse lignocellulosiche per la produzione di molecole piattaforma, utilizzabili per la sintesi di intermedi per la chimica fine, l’industria polimerica ed i combustibili, è attualmente un argomento di ricerca di grande interesse. Tra le molecole più studiate vi è la furfurale (FU), che si può ottenere mediante disidratazione dei monosaccaridi pentosi contenuti nei materiali lignocellulosici. Il prodotto di riduzione della furfurale, l’alcol furfurilico (FAL), è commercialmente interessante perché trova applicazione nell’industria polimerica e viene utilizzato come intermedio nella produzione di lisina, vitamina C, lubrificanti e agenti dispersanti. In letteratura sono riportati numerosi processi che permettono di ottenere questo prodotto, utilizzando la riduzione catalitica con H2 in pressione, che però presentano problemi di selettività, costo, sostenibilità e tossicità del catalizzatore utilizzato. La possibilità di effettuare la riduzione selettiva della furfurale senza fare ricorso all’idrogeno molecolare, utilizzando un processo di H-transfer e catalizzatori eterogenei a base di ossidi misti, risulta quindi di estremo interesse perché permette di eliminare i suddetti problemi. Lo scopo di questa tesi è stato quello di ottimizzare il processo, confrontando catalizzatori basici, quali MgO, CaO e SrO ottenuti tramite calcinazione a diverse temperature dei rispettivi precursori. In particolare, è stata valutata l’influenza che la temperatura di calcinazione, il tempo e la temperatura di reazione hanno sulla reattività e la stabilità dei sistemi catalitici sintetizzati. La caratterizzazione dei catalizzatori tramite diffrazione ai raggi X (XRD), analisi termiche (TGA, DTA) e misure di area superficiale con tecnica BET ha permesso di correlare le proprietà chimico-fisiche dei materiali con la loro attività catalitica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro di tesi è stato affrontato uno studio mirato alla comprensione ed alla correlazione delle proprietà chimico-fisiche e morfologiche di catalizzatori a base di Pd/Pt supportati su allumina impiegati nella produzione di idrogeno mediante deidrogenazione di miscele complesse di idrocarburi contenenti elevati tenori di zolfo. La produzione di idrogeno mediante deidrogenazione parziale di fuel direttamente su aeromobili necessita di catalizzatori altamente performanti dei quali siano note tutte le caratteristiche in modo da prevedere, in un ampio margine di sicurezza, le possibili cause di malfunzionamento. L’applicabilità di materiali a base di Pd/Pt in questa reazione risiede nella loro capacità di resistere all’avvelenamento da zolfo, rivendicata in letteratura per reazioni di idrogenazione e della quale si sono trovate evidenze sperimentali in alcune prove preliminari svolte nello stesso ambito di ricerca. Le prove catalitiche hanno evidenziato che la deposizione su allumina dei due metalli in ragione di un rapporto molare Pd:Pt=2 con un carico di metalli complessivo del 2% in peso mostra i migliori risultati in termini di resistenza all’avvelenamento da zolfo e da deposizione di composti carboniosi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro della tesi si basa su prove di reattivtà di etanolo su catalizzatori formati da ossidi misti contenenti vanadio, in particolare un ferro vanadato e un rame vanadato, allo scopo di determinare la possibilità di ottenere chemicals di interesse a partire da una materia rinnovabile in processi one-pot consumando in situ intermendi pericolosi ( es. acetaldeide). Le prove sono state effettuate in un reattore tubolare in vetro, in continuo e a letto fisso. Le analisi della miscela uscente dal reattore sono state eseguite online per gascromatografia. Le varie prove sono state eseguite variando la composizione della miscela reagente, in particolare aggiungendo alternativamente e simultaneamente acqua e ossigeno alla miscela di etanolo e azoto ( sempre presenti nell'alimentazione). Per ogni miscela sono state eseguite prove a varie temperature. I catalizzatori sono stati caratterizzati via spettroscopia Rama, IR, XRD prima e dopo le varie reattvità.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogenation of biomass-derived molecules is a key reaction in upgrading these compounds into chemicals and fuels. The use of catalytic transfer hydrogenation, employing alcohols as hydrogen sources, offers an alternative approach to this process, avoiding the use of H2 under high pressure and precious metal catalysts. In this work, the gas-phase conversion of biomass-derived furfural into furfuryl alcohol and 2-methylfuran was studied, using methanol as the H-transfer agent and CaO-based catalysts. The results obtained with this catalyst were compared with those obtained by using MgO, which due to its basic properties and to its high surface area, at present appears to be among the best basic catalysts used for the conversion of biomass-derived molecules. Pure CaO, despite having a very low surface area, compared to MgO catalyst (5 m2/g vs. 172 m2/g), was shown to reduce furfural into its corresponding unsaturated alcohol at 350°C, thus allowing selective H-transfer from methanol to the substrate. These results highlight the potential application of the H-transfer reaction over CaO based catalysts as an efficient process for the selective reduction of biomass-derived molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il cambiamento climatico è una delle sfide più ardue che il nostro pianeta abbia mai dovuto affrontare. Negli ultimi anni si sta rendendo sempre più evidente la necessità di un profondo cambiamento ideologico e sociale in ogni campo. La Green Chemistry mira a capeggiare questo cambiamento proponendo dei principi guida in modo da indirizzare la chimica verso tale traguardo. Possibili strumenti attuativi di questa visione sono senza alcun dubbio le bioraffinerie. Raffinerie appunto, nate però per processare materie prime provenienti da fonti rinnovabili, le biomasse. Esistono diversi tipi di biomasse, dalle quali possono essere ricavate differenti molecole piattaforma. La biomassa lignocellulosica, per esempio, viene sfruttata per ottenere perlopiù composti furanici. Tra questi di particolare interesse è la furfurale(FUR), un’aldeide particolarmente reattiva dalla quale possono essere ottenute numerose sostanze chimiche ad alto valore aggiunto. Tra queste si trova il γ-valerolattone(GVL), estere ciclico a cinque atomi di carbonio, promettente prodotto preliminare nella sintesi di combustibili a base biologica e prodotti chimici di base. Il processo che porta dalla FUR al GVL comprende diversi step di reazione, alcuni catalizzati da acididi Lewis, altri da acididi Brønsted. Gli step di riduzione possono essere eseguiti mediante una reazione di Catalytic Transfer Hydrogenation (CTH) utilizzando isopropanolo piuttosto che H2 gassoso. La scelta del solvente/riducente assieme all’utilizzo di un sistema catalitico eterogeneo permettono la realizzazione della reazione con un basso impatto ambientale. Per quanto riguarda la scelta del sistema catalitico, particolarmente interessante è la combinazione TiO2-ZrO2. Lo scopo di questa tesi è stato quello di sintetizzare e valutare le performance di sistemi catalitici a base di ossidi misti Ti/Zr/O con diverse composizioni nella conversione della FUR a GVL in un reattore in fase liquida.