465 resultados para metodi level set segmentazione immagini di nevi immagini mediche regolarizzazione
Resumo:
La tesi in oggetto propone un algoritmo che viene incontro alla necessità di segmentare in modo regolare immagini di nevi. Si è fatto uso di metodi level set region-based in una formulazione variazionale. Tale metodo ha permesso di ottenere una segmentazione precisa, adattabile a immagini di nevi con caratteristiche molto diverse ed in tempi computazionali molto bassi.
Resumo:
Nell'ambito dell'elaborazione delle immagini, si definisce segmentazione il processo atto a scomporre un'immagine nelle sue regioni costituenti o negli oggetti che la compongono. Ciò avviene sulla base di determinati criteri di appartenenza dei pixel ad una regione. Si tratta di uno degli obiettivi più difficili da perseguire, anche perché l'accuratezza del risultato dipende dal tipo di informazione che si vuole ricavare dall'immagine. Questa tesi analizza, sperimenta e raffronta alcune tecniche di elaborazione e segmentazione applicate ad immagini digitali di tipo medico. In particolare l'obiettivo di questo studio è stato quello di proporre dei possibili miglioramenti alle tecniche di segmentazione comunemente utilizzate in questo ambito, all'interno di uno specifico set di immagini: tomografie assiali computerizzate (TAC) frontali e laterali aventi per soggetto ginocchia, con ivi impiantate protesi superiore e inferiore. L’analisi sperimentale ha portato allo sviluppo di due algoritmi in grado di estrarre correttamente i contorni delle sole protesi senza rilevare falsi punti di edge, chiudere eventuali gap, il tutto a un basso costo computazionale.
Resumo:
L’analisi istologica riveste un ruolo fondamentale per la pianificazione di eventuali terapie mediche o chirurgiche, fornendo diagnosi sulla base dell’analisi di tessuti, o cellule, prelevati con biopsie o durante operazioni. Se fino ad alcuni anni fa l’analisi veniva fatta direttamente al microscopio, la sempre maggiore diffusione di fotocamere digitali accoppiate consente di operare anche su immagini digitali. Il presente lavoro di tesi ha riguardato lo studio e l’implementazione di un opportuno metodo di segmentazione automatica di immagini istopatologiche, avendo come riferimento esclusivamente ciò che viene visivamente percepito dall’operatore. L’obiettivo è stato quello di costituire uno strumento software semplice da utilizzare ed in grado di assistere l’istopatologo nell’identificazione di regioni percettivamente simili, presenti all’interno dell’immagine istologica, al fine di considerarle per una successiva analisi, oppure di escluderle. Il metodo sviluppato permette di analizzare una ampia varietà di immagini istologiche e di classificarne le regioni esclusivamente in base alla percezione visiva e senza sfruttare alcuna conoscenza a priori riguardante il tessuto biologico analizzato. Nella Tesi viene spiegato il procedimento logico seguito per la progettazione e la realizzazione dell’algoritmo, che ha portato all’adozione dello spazio colore Lab come dominio su cu cui calcolare gli istogrammi. Inoltre, si descrive come un metodo di classificazione non supervisionata utilizzi questi istogrammi per pervenire alla segmentazione delle immagini in classi corrispondenti alla percezione visiva dell’utente. Al fine di valutare l’efficacia dell’algoritmo è stato messo a punto un protocollo ed un sistema di validazione, che ha coinvolto 7 utenti, basato su un data set di 39 immagini, che comprendono una ampia varietà di tessuti biologici acquisiti da diversi dispositivi e a diversi ingrandimenti. Gli esperimenti confermano l’efficacia dell’algoritmo nella maggior parte dei casi, mettendo altresì in evidenza quelle tipologie di immagini in cui le prestazioni risultano non pienamente soddisfacenti.
Resumo:
L’imaging ad ultrasuoni è una tecnica di indagine utilizzata comunemente per molte applicazioni diagnostiche e terapeutiche. La tecnica ha numerosi vantaggi: non è invasiva, fornisce immagini in tempo reale e l’equipaggiamento necessario è facilmente trasportabile. Le immagini ottenute con questa tecnica hanno tuttavia basso rapporto segnale rumore a causa del basso contrasto e del rumore caratteristico delle immagini ad ultrasuoni, detto speckle noise. Una corretta segmentazione delle strutture anatomiche nelle immagini ad ultrasuoni è di fondamentale importanza in molte applicazioni mediche . Nella pratica clinica l’identificazione delle strutture anatomiche è in molti casi ancora ottenuta tramite tracciamento manuale dei contorni. Questo processo richiede molto tempo e produce risultati scarsamente riproducibili e legati all’esperienza del clinico che effettua l’operazione. In ambito cardiaco l’indagine ecocardiografica è alla base dello studio della morfologia e della funzione del miocardio. I sistemi ecocardiografici in grado di acquisire in tempo reale un dato volumetrico, da pochi anni disponibili per le applicazioni cliniche, hanno dimostrato la loro superiorità rispetto all’ecocardiografia bidimensionale e vengono considerati dalla comunità medica e scientifica, la tecnica di acquisizione che nel futuro prossimo sostituirà la risonanza magnetica cardiaca. Al fine di sfruttare appieno l’informazione volumetrica contenuta in questi dati, negli ultimi anni sono stati sviluppati numerosi metodi di segmentazione automatici o semiautomatici tesi alla valutazione della volumetria del ventricolo sinistro. La presente tesi descrive il progetto, lo sviluppo e la validazione di un metodo di segmentazione ventricolare quasi automatico 3D, ottenuto integrando la teoria dei modelli level-set e la teoria del segnale monogenico. Questo approccio permette di superare i limiti dovuti alla scarsa qualità delle immagini grazie alla sostituzione dell’informazione di intensità con l’informazione di fase, che contiene tutta l’informazione strutturale del segnale.
Resumo:
Segmentare un’immagine significa riconoscere al suo interno elementi con caratteristiche comuni e raggrupparli, distinguendoli dagli elementi che posseggono caratteristiche diverse; si parla di segmentazione automatica quando questo processo è eseguito completamente da un software senza l’intervento umano. Segmentare le immagini TC, molto diffuse in ambito diagnostico, permette di estrarre una grande quantità di dati dall’alto valore prognostico e predittivo della composizione corporea del paziente. Tuttavia, a causa della scarsa diffusione di software per la segmentazione automatica, tutti questi dati non vengono utilizzati. Il presente lavoro di tesi si propone di riportare lo stato dell’arte sulla segmentazione, sia manuale sia automatica, dei tessuti corporei in immagini TC. Vengono spiegati i vantaggi dell’utilizzo di grandezze CT-derived rispetto a molti dei protocolli odierni e vengono esposti gli attuali livelli di accuratezza delle segmentazioni effettuate con metodi automatici. Inoltre, ci si sofferma, cercando di quantificarli, sugli effetti del mezzo di contrasto sulle grandezze CT-derived, poiché questi possono generare errori nella segmentazione automatica dei tessuti. Infine, viene esposto l’approccio 3D alla segmentazione in contrapposizione al metodo single slice, con il primo caratterizzato da un’accuratezza maggiore del secondo. Per accedere alla versione aggiornata e corretta, contattare l'autore ai seguenti indirizzi: simone.chiarella@studio.unibo.it; simonechiarella99@gmail.com
Resumo:
L’obiettivo della tesi consiste nell’osservazione di un’immagine ecografica e nella sua analisi tramite vari metodi di segmentazione. Il fine di questo approfondimento è di rendere chiari e misurabili alcuni elementi significativi della figura presa in considerazione. Sono analizzati e implementati alcuni metodi per la segmentazione di un’immagine e applicati ad alcune immagini campione con caratteristiche diverse. Dai risultati ottenuti da questi test sono scelti i metodi più efficaci ed applicati all’ecografia. Il lavoro è svolto nel modo seguente: nel primo capitolo si tratta dei vari metodi di filtrazione di un’immagine e di segmentazione, nel secondo capitolo l’elaborazione delle immagini tramite implementazione dei vari metodi. Il primo capitolo è più teorico, affronta il problema da un punto di vista generale ed è suddiviso in sei sottocapitoli. Nella prima sezione si definisce un’immagine digitale e le nozioni fondamentali di lettura di un’immagine con MATLAB. La seconda e la terza sezione trattano nello specifico i filtri che vengono utilizzati per migliorare un’immagine prima di accedere alla segmentazione definitiva. Nelle ultime tre sezioni vengono studiati alcuni metodi di segmentazione più importanti e di facile implementazione. Il secondo capitolo mette a confronto i vari filtri e i metodi di segmentazione su ‘immagini campione’; infine la parte più interessante e applicativa è la sezione 2.4 in cui viene segmentata l’immagine ecografica che si intende analizzare.
Resumo:
La tesi affronta il problema della ricostruzione di immagini di tomosintesi, problema che appartiene alla classe dei problemi inversi mal posti e che necessita di tecniche di regolarizzazione per essere risolto. Nel lavoro svolto sono presenti principalmente due contributi: un'analisi del modello di ricostruzione mediante la regolarizzazione con la norma l1; una valutazione dell'efficienza di alcuni metodi tra quelli che in letteratura costituiscono lo stato dell'arte per quanto riguarda i metodi basati sulla norma l1, ma che sono in genere applicati a problemi di deblurring, dunque non usati per problemi di tomosintesi.
Resumo:
La segmentazione prevede la partizione di un'immagine in aree strutturalmente o semanticamente coerenti. Nell'imaging medico, è utilizzata per identificare, contornandole, Regioni di Interesse (ROI) clinico, quali lesioni tumorali, oggetto di approfondimento tramite analisi semiautomatiche e automatiche, o bersaglio di trattamenti localizzati. La segmentazione di lesioni tumorali, assistita o automatica, consiste nell’individuazione di pixel o voxel, in immagini o volumi, appartenenti al tumore. La tecnica assistita prevede che il medico disegni la ROI, mentre quella automatica è svolta da software addestrati, tra cui i sistemi Computer Aided Detection (CAD). Mediante tecniche di visione artificiale, dalle ROI si estraggono caratteristiche numeriche, feature, con valore diagnostico, predittivo, o prognostico. L’obiettivo di questa Tesi è progettare e sviluppare un software di segmentazione assistita che permetta al medico di disegnare in modo semplice ed efficace una o più ROI in maniera organizzata e strutturata per futura elaborazione ed analisi, nonché visualizzazione. Partendo da Aliza, applicativo open-source, visualizzatore di esami radiologici in formato DICOM, è stata estesa l’interfaccia grafica per gestire disegno, organizzazione e memorizzazione automatica delle ROI. Inoltre, è stata implementata una procedura automatica di elaborazione ed analisi di ROI disegnate su lesioni tumorali prostatiche, per predire, di ognuna, la probabilità di cancro clinicamente non-significativo e significativo (con prognosi peggiore). Per tale scopo, è stato addestrato un classificatore lineare basato su Support Vector Machine, su una popolazione di 89 pazienti con 117 lesioni (56 clinicamente significative), ottenendo, in test, accuratezza = 77%, sensibilità = 86% e specificità = 69%. Il sistema sviluppato assiste il radiologo, fornendo una seconda opinione, non vincolante, adiuvante nella definizione del quadro clinico e della prognosi, nonché delle scelte terapeutiche.
Resumo:
Recentemente è stato stimato che si trovino circa 150 milioni di tonnellate di plastica nei mari di tutto il mondo, con conseguente aumento annuo di 8 milioni di tonnellate: si dice anche che entro il 2050 sarà presente, in termini di peso, nei mari e negli oceani più plastica che pesci. Inoltre, non solo le macro plastiche sono un serio problema ambientale, ma anche la loro frammentazione e decomposizione a causa della prolungata esposizione al sole, acqua e aria porta a microplastiche (dimensione minore di 5 mm): questi piccoli rifiuti che si vanno a depositare nei fondali rappresentano una seria problematica per la salute umana, poiché questi ultimi potrebbero essere ingeriti da pesci, provocandogli anche ridotta riproduttività e infiammazioni, entrando dunque nella nostra catena alimentare. L’idea di questo elaborato sviluppato mediante la collaborazione con il centro di ricerca VTT in Finlandia è quella di sviluppare soluzioni innovative e nuovi metodi per la rilevazione di rifiuti in plastica galleggianti. In sintesi, in questo elaborato sarà presente una parte di ricerca bibliografica, in cui vengono illustrati i principali articoli che spiegano i progetti più attinenti al Remote Sensing di rifiuti di plastica galleggianti trovati in letteratura, successivamente sarà presente la parte più pratica svolta al VTT, in particolare verrà spiegato il Radar MIMO a 60 GHz (prodotto dal VTT) utilizzato per le misurazioni di test su una piccola piscina circolare con i relativi dati ottenuti, infine si descriverà la campagna di misure tramite telecamere iperspettrali, sensori RGB e termo-infrarossi ad Oulu con, anche in tale caso, i dati spettrali di risalto che sono stati ricavati. Infine, in aggiunta ai risultati della campagna iperspettrale, si vuole cercare di applicare degli algoritmi di Machine Learning per cercare di classificare e dunque di identificare i vari campioni di plastica visualizzati nelle varie immagini spettrali acquisite.
Resumo:
Spesso il termine virtuale viene associato ad un mondo immateriale, lontano dalla realtà e distante dagli elementi più concreti che la caratterizzano. La virtualità, tuttavia, non è solo questo. Se considerata, come lo stesso Levy sostiene, un mondo che non si contrappone al reale (ma all’attuale), anzi lo potenzia e lo rafforza, il suo valore e l’idea di essa cambiano notevolmente. Già la fotografia, il cinema, la televisione possono essere considerate, ancora prima della più moderna realtà virtuale e delle innovative tecnologie forme di virtualità. Il loro utilizzo largamente diffuso ha ampliato le potenzialità del concreto ed è oggi apprezzato e utilizzato da tutti. Il nostro progetto nasce dalla volontà di sperimentare le nuove forme del virtuale associandole al campo dell’architettura per potenziarne la conoscenza didattica, la diffusione e trasmettere gli importanti contenuti che le sottendono in maniera chiara ed efficace. Il progetto sviluppato affronta un tema concreto di concept di museo virtuale su web e una proposta di installazione interattiva all’interno del salone di Palazzo Barbaran a Vicenza. A cardine di questi due lavori vi è il lascito Palladiano, a cominciare dallo sprawl di ville, palazzi e chiese diffusi nel paesaggio Veneto, passando per i progetti ideali rimasti solo su carta e concludendo con la sua opera bibliografica più famosa: I quattro libri dell’architettura. Palladio e il digitale è dunque un progetto che vuole dimostrare l’importanza e la versatilità delle installazioni virtuali, quali strumenti utili all’apprendimento e alla trasmissione della conoscenza, e dall’altro rispondere concretamente ai cambiamenti della società, cercando, attraverso queste sperimentazioni, di definire anche i nuovi caratteri dell’ evoluzione museale.